NIR-Based Predictive Modelling for the Quantification of Sucrose, Glucose, and Fructose in Brown Sugar from Oil Palm Trunk Sap

Authors

  • Sharly Claudia Alghai Sani IPB University
  • Dase Hunaefi IPB University
  • Faleh Setia Budi IPB University
  • Yessie Widya Sari IPB University
  • Ilham Akbar Ibrahim PT. Virtus Analitika Mitratama
  • Noviani Rustanto PT. Virtus Analitika Mitratama

DOI:

https://doi.org/10.23960/jtepl.v15i1.256-267
Abstract View: 26

Keywords:

Brown sugar, NIR spectroscopy, Oil palm trunk, PLSR calibration, Sugar content prediction

Abstract

Using oil palm trunk sap as a raw material for brown sugar is an innovative alternative for local product diversification. However, craftsmen's limited access to laboratory analysis methods is challenging to maintain product quality consistency. This study aims to evaluate the feasibility of using near-infrared spectroscopy (NIRS) combined with chemometric modelling for the estimation of sucrose, glucose, and fructose content in brown sugar derived from oil palm trunk sap. This method combines destructive analysis using high-performance liquid chromatography (HPLC) as a reference with non-destructive NIRS analysis and partial least squares regression (PLSR) modelling. The prediction model performed very well for glucose with an R² of 0.991, while for sucrose it was 0.850 and fructose 0.860. However, the relatively high values of SEC and SEP and the low prediction consistency (<20%) indicate that the current chemometric strategy is not yet fully adequate, suggesting the need for a larger and more process-representative sample set, more rigorous consideration of sample representativeness and laboratory reference uncertainty (SEL), and the inclusion of laboratory reference error (SEL) from HPLC data to enable more robust and reliable model development. These findings indicate that NIRS has potential as a fast and non-destructive method for brown sugar quality control, but further development is needed to make the model more reliable under various production conditions.

Downloads

Download data is not yet available.

Author Biographies

Sharly Claudia Alghai Sani, IPB University

Departement of Food Science and Technology, Faculty of Agricultural Engineering and Technology

Dase Hunaefi, IPB University

Departement of Food Science and Technology, Faculty of Agricultural Engineering and Technology

Faleh Setia Budi, IPB University

Departement of Food Science and Technology, Faculty of Agricultural Engineering and Technology

Yessie Widya Sari, IPB University

Departement of Physics, Faculty of Mathematics and Natural Sciences

References

Alves, V., Dos Santos, J.M., Viegas, O., Pinto, E., Ferreira, I.M., Lima, V.A., & Felsner, M.L. (2024). An eco-friendly approach for analysing sugars, minerals, and colour in brown sugar using digital image processing and machine learning. Food Research International, 191, 114673. https://doi.org/10.1016/j.foodres.2024.114673

Amankwaah, V.A., Williamson, S., Reynolds, R., Ibrahem, R., Pecota, K.V., Zhang, X., Olukolu, B.A., Truong, V.D., Carey, E., Felde, T.Z., Ssali, R., & Yencho, G.C. (2024). Development of NIRS calibration curves for sugars in baked sweetpotato. Journal of the Science of Food and Agriculture, 104(8), 4801–4807. https://doi.org/10.1002/jsfa.12800

Ansar, Nazaruddin, & Azis, A.D. (2022). Analysis of pH parameters and color of palm sap since tapping. IOP Conference Series:Earth andEnvironmental Science, 1116, 012025. https://doi.org/10.1088/1755-1315/1116/1/012025

Bala, M., Sethi, S., Sharma, S., Mridula, D., & Kaur, G. (2022). Prediction of maize flour adulteration in chickpea flour (besan) using near infrared spectroscopy. Journal of Food Science and Technology, 59(8), 3130–3138. https://doi.org/10.1007/s13197-022-05456-7

Beć, K.B., Grabska, J., & Huck, C.W. (2020). Near-infrared spectroscopy in bio-applications. Molecules, 25(12), 2948. https://doi.org/10.3390/molecules25122948

Borras, A.S., Ganotisi, R.A.B., Linsangan, N.B., & Juanatas, R.A. (2022). Non-destructive determination of sweetness of philippine fruits using nir technology. IEEE International Conference on Artificial Intelligence in Engineering and Technology, 1–6. https://doi.org/10.1109/IICAIET55139.2022.9936746

Cornehl, L., Gauweiler, P., Zheng, X., Krause, J., Schwander, F., Töpfer, R., Gruna, R., & Kicherer, A. (2024). Non-destructive quantification of key quality characteristics in individual grapevine berries using near-infrared spectroscopy. Frontiers in Plant Science, 15, 1–16. https://doi.org/10.3389/fpls.2024.1386951

Cozzolino, D. (2021). The ability of near infrared (NIR) spectroscopy to predict functional properties in foods: Challenges and opportunities. Molecules, 26(22). https://doi.org/10.3390/molecules26226981

Daba, S.D., Honigs, D., McGee, R.J., & Kiszonas, A.M. (2022). Prediction of protein concentration in pea (Pisum sativum L.) using near-infrared spectroscopy (NIRS) systems. Foods, 11(22), 1–15. https://doi.org/10.3390/foods11223701

Deewatthanawong, R., Kongchinda, P., Chanapan, S., Tontiworachai, B., Sakkhamduang, C., & Montri, N. (2023). Non-destructive measurement of tetrahydrocannabinol (THC) and cannabidiol (CBD) using near-infrared spectroscopy. International Journal of Agricultural Technology, 19(6), 2413–2426.

Dirkes, R., Neubauer, P.R., & Rabenhorst, J. (2021). Pressed sap from oil palm (Elaeis guineensis) trunks: A revolutionary growth medium for the biotechnological industry? Biofuels, Bioproducts and Biorefining, 15(3), 931–944. https://doi.org/10.1002/bbb.2201

Fodor, M., Matkovits, A., Benes, E.L., & Jókai, Z. (2024). The role of near-infrared spectroscopy in food quality assurance: A review of the past two decades. Foods, 13(21), 3501. https://doi.org/10.3390/foods13213501

Fu, D., Li, Q., Chen, Y., Ma, M., & Tang, W. (2023). Assessment of integrated freshness index of different varieties of eggs using the visible and near-infrared spectroscopy. International Journal of Food Properties, 26(1), 155–166. https://doi.org/10.1080/10942912.2022.2158866

Gariglio, S., Malegori, C., Menżyk, A., Zadora, G., Vincenti, M., Casale, M., & Oliveri, P. (2024). Determination of time since deposition of bloodstains through NIR and UV–Vis spectroscopy–A critical comparison. Talanta, 278, 126444. https://doi.org/10.1016/j.talanta.2024.126444

Gorla, G., Taborelli, P., Ahmed, H.J., Alamprese, C., Grassi, S., Boqué, R., Riu, J., & Giussani, B. (2023). Miniaturized NIR spectrometers in a nutshell: shining light over sources of variance. Chemosensors, 11(3), 1–24. https://doi.org/10.3390/chemosensors11030182

He, H.-J., Wang, Y., Zhang, M., Wang, Y., Ou, X., & Guo, J. (2022). Rapid determination of reducing sugar content in sweet potatoes using NIR spectra. Journal of Food Composition and Analysis, 111, 104641. https://doi.org/10.1016/j.jfca.2022.104641

Heil, K., & Schmidhalter, U. (2021). An evaluation of different nir-spectral pre-treatments to derive the soil parameters c and n of a humus-clay-rich soil. Sensors, 21(4), 1–24. https://doi.org/10.3390/s21041423

Jaywant, S.A., Singh, H., & Arif, K.M. (2022). Sensors and instruments for brix measurement: A review. Sensors, 22(6), 1–20. https://doi.org/10.3390/s22062290

Johnson, J.B., Walsh, K.B., Naiker, M., & Ameer, K. (2023). The use of infrared spectroscopy for the quantification of bioactive compounds in food: a review. Molecules, 28(7). https://doi.org/10.3390/molecules28073215

Lackey, H.E., Sell, R.L., Nelson, G.L., Bryan, T.A., Lines, A.M., & Bryan, S.A. (2023). Practical guide to chemometric analysis of optical spectroscopic data. Journal of Chemical Education, 100(7), 2608–2626. https://doi.org/10.1021/acs.jchemed.2c01112

Larson, J.E., Perkins-Veazie, P., Ma, G., & Kon, T.M. (2023). Quantification and prediction with near infrared spectroscopy of carbohydrates throughout apple fruit development. Horticulturae, 9(2), 279. https://doi.org/10.3390/horticulturae9020279

Li, M., Pan, T., Bai, Y., & Chen, Q. (2022). Development of a calibration model for near infrared spectroscopy using a convolutional neural network. Journal of Near Infrared Spectroscopy, 30(2), 89–96. http://dx.doi.org/10.1177/09670335211057234

Liu, C., Zhang, X., Nguyen, T.T., Liu, J., Wu, T., Lee, E., & Tu, X.M. (2022). Partial least squares regression and principal component analysis: Similarity and differences between two popular variable reduction approaches. General Psychiatry, 35(1), 1–5. https://doi.org/10.1136/gpsych-2021-100662

Liu, J., Wan, P., Xie, C., & Chen, D.-W. (2021). Key aroma-active compounds in brown sugar and their influence on sweetness. Food Chemistry, 345, 128826. https://doi.org/10.1016/j.foodchem.2020.128826

Luo, X., Liu, Y., Xing, J., Bi, X., Shen, J., Zhang, S., Xu, X., Mao, L., & Lou, Y. (2024). Comparison of ELSD and RID combined with HPLC for simultaneous determination of six rare sugars in food components. Microchemical Journal, 201, 110666. https://doi.org/10.1016/j.microc.2024.110666

Makmuang, S. (2018). Determination of sugar in non-alcoholic beverages using near infrared spectroscopy combined with chemometrics. [Master Thesis]. Chulalongkorn University. https://digital.car.chula.ac.th/chulaetd/2244

Maraphum, K., Saengprachatanarug, K., Wongpichet, S., Phuphuphud, A., & Posom, J. (2022). Achieving robustness across different ages and cultivars for an NIRS-PLSR model of fresh cassava root starch and dry matter content. Computers and Electronics in Agriculture, 196, 106872. https://doi.org/10.1016/j.compag.2022.106872

Mayr, S., Beć, K. B., Grabska, J., Schneckenreiter, E., & Huck, C.W. (2021). Near-infrared spectroscopy in quality control of Piper nigrum: A comparison of performance of benchtop and handheld spectrometers. Talanta, 223(2), 121809. https://doi.org/10.1016/j.talanta.2020.121809

McCleary, B.V., & McLoughlin, C. (2023). Determination of Insoluble, soluble, and total dietary fiber in foods using a rapid integrated procedure of enzymatic-gravimetric-liquid chromatography: first action 2022.01. Journal of AOAC International, 106(1), 127–145. https://doi.org/10.1093/jaoacint/qsac098

Nelum, K.G., Piyasena, P., Ranatunga, M.A.B., Jayawardhane, S., Edirisinghe, E.N.U., Tharangika, H.B., Ghouse, A.S., Abayarathne, A.A.B., Jayasinghe, W.S., Abeysinghe, I.S.B., & Hettiarachchi L.S.K. (2023). Prediction of glucose and sucrose values of black tea samples using NIR spectroscopy and chemometrics. Food and Humanity, 1, 1482–1493. https://doi.org/10.1016/j.foohum.2023.10.016

Nurdjanah, S., Hasanudin, U., Yuliandari, P., Utomo, T.P., Nawansih, O., & Setiyoko, F. (2024). Characteristics of liquid sugar from old oil palm trunk sap as affected by processing methods. Jurnal Teknologi dan Industri Hasil Pertanian, 29(2), 190–199. http://dx.doi.org/10.23960/jtihp.v29i2.190-199

Nuryawan, A., Sutiawan, J., Rahmawaty, Masruchin, N., & Bekhta, P. (2022). Panel products made of oil palm trunk: A review of potency, environmental aspect, and comparison with wood-based composites. Polymers, 14(9), 1758. https://doi.org/10.3390/polym14091758

Parrenin, L., Danjou, C., Agard, B., Marchesini, G., & Barbosa, F. (2024). A decision support tool to analyze the properties of wheat, cocoa beans and mangoes from their NIR spectra. Journal of Food Science, 89(9), 5674–5688. https://doi.org/10.1111/1750-3841.17252

Parrini, S., Acciaioli, A., Crovetti, A., & Bozzi, R. (2018). Use of FT-NIRS for determination of chemical components and nutritional value of natural pasture. Italian Journal of Animal Science, 17(1), 87–91. https://doi.org/10.1080/1828051X.2017.1345659

Pierre, C.C., & Wiencek, J.R. (2023). The impact of environmental factors on external and internal specimen transport. Clinical Biochemistry, 115, 13–21. https://doi.org/10.1016/j.clinbiochem.2022.11.005

Pradiko, I., Rahutomo, S., Farrasati, R., Ginting, E.N., Hidayat, F., & Syarovy, M. (2023). Transpiration of oil palm (Elaeis guineensis Jacq.) based on sap flow measurement: the relation to soil and climate variables. Journal of Oil Palm Research, 35(1), 168–184. https://doi.org/10.21894/jopr.2022.0035

Prasetyo, E.E.W., Amanah, H.Z., Farras, I., Pahlawan, M.F.R., & Masithoh, R.E. (2024). Partial least square regression for nondestructive determination of sucrose content of healthy and fusarium spp. infected potato (Solanum tuberosum L.) utilizing visible and near-infrared spectroscopy. International Journal on Advanced Science, Engineering and Information Technology, 14(3), 1001–1009. https://doi.org/10.18517/ijaseit.14.3.19841

Putra, N.D., Oka, L., Apsari, P., Artama, N., & Agung, A. (2024). Analysis Of tuaks as raw material of juruh ental sugar for tourism products in Les Village, Tejakula District. International Journal of Entrepreneurship and Tourism, 2(1), 23–31. https://doi.org/10.57203/ijent.v2i1.2024.23-31

Qiao, L., Mu, Y., Lu, B., & Tang, X. (2023). Calibration maintenance application of near-infrared spectrometric model in food analysis. Food Reviews International, 39(3), 1628–1644. https://doi.org/10.1080/87559129.2021.1935999

Riza, D.F.A., Rulin, C., Tun, N.T.T., Yi, P.P.L., Thwe, A.A., Myint, K.T., & Kondo, N. (2023). Mango (Mangifera indica cv. Sein Ta Lone) ripeness level prediction using color and textural features of combined reflectance-fluorescence images. Journal of Agriculture and Food Research, 11, 100477. https://doi.org/10.1016/j.jafr.2022.100477

Rodrigues, D.P., Mitterer-Daltoé, M.L., de Lima, V.A., Barreto-Rodrigues, M., & Pereira, E.A. (2021). Simultaneous determination of organic acids and sugars in fruit juices by high performance liquid chromatography: Characterization and differentiation of commercial juices by principal component analysis. Ciência Rural, 51(3), e20200629. https://doi.org/10.1590/0103-8478cr20200629

Sadergaski, L.R., Irvine, S.B., & Andrews, H.B. (2023). Partial least squares, experimental design, and near-infrared spectrophotometry for the remote quantification of nitric acid concentration and temperature. Molecules, 28(7), 3224. https://doi.org/10.3390/molecules28073224

Sánchez, M., Pintado, C., de la Haba, M., Torres, I., García, M., & Pérez‐Marín, D. (2020). In situ ripening stages monitoring of lamuyo pepper using a new‐generation near‐infrared spectroscopy sensor. Journal of the Science of Food and Agriculture, 100(5), 1931–1939. https://doi.org/10.1002/jsfa.10205

Sarkar, T., Mukherjee, M., Roy, S., & Chakraborty, R. (2023). Palm sap sugar an unconventional source of sugar exploration for bioactive compounds and its role on functional food development. Heliyon, 9(4), e14788. https://doi.org/10.1016/j.heliyon.2023.e14788

Silalahi, D.D., Midi, H., Arasan, J., Mustafa, M.S., & Caliman, J.-P. (2021). Kernel partial least square regression with high resistance to multiple outliers and bad leverage points on near-infrared spectral data analysis. Symmetry, 13(4), 547. https://doi.org/10.3390/sym13040547

Simbolon, S.B., Supriana, T., & Lindawati. (2021). Marketing strategy of brown sugar from palm oil in Serdang Bedagai District. IOP Conference Series: Earth and Environmental Science, 782(2), 022012. https://doi.org/10.1088/1755-1315/782/2/022012

Siswati, L., Insusanty, E., Susi, N., & Nopryanti. (2022). Oil palm trunk replanting as brown sugar raw materials. IOP Conference Series: Earth and Environmental Science, 1041(1), 012054. https://doi.org/10.1088/1755-1315/1041/1/012054

Solihin, M.I., Yuan, C.J., Hong, W.S., Pui, L.P., Kit, A.C., Hossain, W., & Machmudah, A. (2024). Spectroscopy data calibration using stacked ensemble machine learning. IIUM Engineering Journal, 25(1), 208–224. https://doi.org/10.31436/iiumej.v25i1.2796

Soyseven, M., Sezgin, B., & Arli, G. (2022). A novel, rapid and robust HPLC-ELSD method for simultaneous determination of fructose, glucose and sucrose in various food samples: Method development and validation. Journal of Food Composition and Analysis, 107, 104400. https://doi.org/10.1016/j.jfca.2022.104400

Soyseven, M., Sezgin, B., & Arli, G. (2023). The development and validation of a novel, green, sustainable and eco-friendly HPLC-ELSD method approach for the simultaneous determination of seven artificial sweeteners in various food products: An assessment of the greenness profile of the developed me. Microchemical Journal, 193, 109225. https://doi.org/10.1016/j.microc.2023.109225

Sringarm, C., Numthuam, S., Singanusong, R., Jiamyangyuen, S., Kittiwatchana, S., Funsueb, S., & Rungchang, S. (2022). Quantitative determination of quality control parameters using near infrared spectroscopy and chemometrics in process monitoring of tapioca sweetener production. Lwt, 167(1), 113876. https://doi.org/10.1016/j.lwt.2022.113876

Sutar, P., Khedkar, P., & Chaturbhuj, G. (2021). Sulfated polyborate, a novel buffer for low ph mobile phase on a nonend capped stationary phase in reverse phase liquid chromatography. Current Chromatography, 8(1), 33–43. https://doi.org/10.2174/2213240608666210913110849

Syahidah, Rayu, S.M.F., Akbar, M.I., & Rahma, A.S. (2023). Production process and its influence on the quality of palm sugar from various regions in South Sulawesi. IOP Conference Series: Earth and Environmental Science, 1230(1), 012168. https://doi.org/10.1088/1755-1315/1230/1/012168

Tiwari, M., Mhatre, S., Vyas, T., Bapna, A., & Raghavan, G. (2023). A Validated HPLC-RID Method for Quantification and Optimization of Total Sugars: Fructose, Glucose, Sucrose, and Lactose in Eggless Mayonnaise. Separations, 10(3). https://doi.org/10.3390/separations10030199

Upadhyaya, A., & Sonawane, S.K. (2023). Palmyrah palm and its products (neera, jaggery and candy)—A review on chemistry and technology. Applied Food Research, 3(1), 100256. https://doi.org/10.1016/j.afres.2022.100256

Veena, K.S., Sameena, M.T., Padmakumari, A.K.P., Nishanth, K.S., Reshma, M.V, & Srinivasa, G.T.K. (2018). Development and validation of HPLC method for determination of sugars in palm sap, palm syrup, sugarcane jaggery and palm jaggery. International Food Research Journal, 25(2).

VIAVI Solutions Inc. (2023). MicroNIR: Integration time, reference spectra & signal strength (Application Note).

Vranić, M., Bošnjak, K., Rukavina, I., Glavanović, S., Pintić Pukec, N., Babić, A., & Vranić, I. (2020). Prediction of forage chemical composition by NIR spectroscopy. Journal of Central European Agriculture, 21(3), 554–568. https://doi.org/10.5513/jcea01/21.3.2839

Wardani, D.K., Junaedi, A., Yahya, S., & Sunarti, T.C. (2020). Morphological characteristics and productivity of sugar palm saps at several levels of tapping age. IOP Conference Series: Earth and Environmental Science, 418(1), 012040. https://doi.org/10.1088/1755-1315/418/1/012040

Zahir, S.A.D.M., Omar, A.F., Jamlos, M.F., Azmi, M.A.M., & Muncan, J. (2022). A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection. Sensors and Actuators A: Physical, 338, 113468. https://doi.org/10.1016/j.sna.2022.113468

Downloads

Published

2026-02-06

How to Cite

Sani, S. C. A., Hunaefi, D., Budi, F. S., Sari, Y. W., Ibrahim, I. A., & Rustanto, N. (2026). NIR-Based Predictive Modelling for the Quantification of Sucrose, Glucose, and Fructose in Brown Sugar from Oil Palm Trunk Sap. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 15(1), 256–267. https://doi.org/10.23960/jtepl.v15i1.256-267