Application of Solar Energy for Coconut Grating Machine in Rural Areas

Authors

  • Husen Asbanu Universitas Darma Persada Jakarta
  • Yendi Esye Universitas Darma Persada Jakarta
  • Yefri Chan Universitas Darma Persada Jakarta
  • Danny Faturachman Universitas Darma Persada Jakarta

DOI:

https://doi.org/10.23960/jtepl.v14i5.1767-1777
Abstract View: 129

Keywords:

Appropriate technology, Coconut processing, Grating machine, Renewable energy

Abstract

Manual processing of coconut and the expensive gasoline force farmers to sell copra at low prices. This study explores the potential use of solar energy for operating coconut grating machines. The experiment utilized a 100 Wp solar panel to run a coconut grating machine driven using ¼ HP electric motor. The observation parameters included solar irradiance, power, voltage, current, battery charging duration, and energy efficiency. The results indicate that a 100 Wp solar panel is insufficient to meet the power requirements of the 186 W electric motor. Therefore, adding at least two solar panels and increasing the battery capacity must meet the machine's operational requirements. The battery charging time, until complete, is recorded at 16 h. Without the support of solar panels, the battery can operate the machine for 3 to 4 h. Meanwhile, when the battery is recharged while the machine operates with the solar panel system, the operating duration can reach 6 to 7 h. Therefore, solar energy demonstrates great potential as a renewable energy solution that can be utilized in the agricultural processing process in rural areas in a sustainable and environmentally friendly manner. Testing of the coconut grating machine powered by solar energy, supported by a 12V 100Ah battery and a 1/4 HP motor, showed that it can operate for approximately 3.8 h in a single work cycle. With a grating duration of 2.6 min per coconut, the system can grate up to approximately 87 coconuts per operational cycle.

Downloads

Download data is not yet available.

Author Biographies

Husen Asbanu, Universitas Darma Persada Jakarta

Departemen Teknik Mesin

Yendi Esye, Universitas Darma Persada Jakarta

Departemen Teknik Elektro

Yefri Chan, Universitas Darma Persada Jakarta

Departemen Teknik Mesin

Danny Faturachman, Universitas Darma Persada Jakarta

Departemen Teknik Perkapalan

References

Adekola, K.A. (2014). Optimum processing parameters for coconut oil expression. Agricultural Engineering International: CIGR Journal, 16(4), 240–244. https://cigrjournal.org/index.php/Ejounral/article/view/2977

Andriansyah, D., Ismail, R.M.L., Maryanti, R.S., Fazal, K.F., & Puspita, K.S. (2024). Mengoptimalkan potensi kelapa untuk meningkatkan perekonomian masyarakat Desa Gunungsari. Rudence: Rural Development for Economic Resilience, 3(2), 49–54. https://rudence-feb.unpak.ac.id/index.php/rudence/article/view/68

Armghan, A., Logeshwaran, J., Raja, S., Aliqab, K., Alsharari, M., & Patel, S.K. (2024). Performance optimization of energy-efficient solar absorbers for thermal energy harvesting in modern industrial environments using a solar deep learning model. Heliyon, 10(4), e26371. https://doi.org/10.1016/j.heliyon.2024.e26371

Atienza, A.H., Arce, J.L., Banawa, K.I., & Rabanal, M.C.T. (2025). Design and performance assessment of a combined grater and milk extraction mechanism for coconut meat. Journal of Physics: Conference Series, 2947(1), 12007. https://doi.org/10.1088/1742-6596/2947/1/012007

Badea, A.-M., Manaila-Maximean, D., Fara, L., & Craciunescu, D. (2025). Maximizing solar photovoltaic energy efficiency: MPPT techniques investigation based on shading effects. Solar Energy, 285, 113082. https://doi.org/10.1016/j.solener.2024.113082

Das, A.K., Shill, D.C., & Chatterjee, S. (2022). Coconut oil for utility transformers–Environmental safety and sustainability perspectives. Renewable and Sustainable Energy Reviews, 164, 112572. https://doi.org/10.1016/j.rser.2022.112572

Dewantara, B.Y. (2019). Perancangan perahu nelayan ramah lingkungan menggunakan motor listrik bertenaga surya. Cyclotron, 2(1). https://doi.org/10.30651/cl.v2i1.2530

Elibol, E., Özmen, Ö.T., Tutkun, N., & Köysal, O. (2017). Outdoor performance analysis of different PV panel types. Renewable and Sustainable Energy Reviews, 67, 651-661. https://doi.org/10.1016/j.rser.2016.09.051

Hariningrum, R. (2021). Analisa pengaruh sudut kemiringan panel surya 100 Wp terhadap daya listrik. Marine Science and Technology Journal, 1(2), 67–76. https://e-journal.ivet.ac.id/index.php/maristec/article/view/1585

Hill, C.A., Such, M.C., Chen, D., Gonzalez, J., & Grady, W.M. (2012). Battery energy storage for enabling integration of distributed solar power generation. IEEE Transactions on Smart Grid, 3(2), 850–857. https://doi.org/10.1109/TSG.2012.2190113

Johnson, V.B., Aguilar, E.A., Alouw, J., Biddle, J.M., Lacsina, J.C., & Manohar, E.C. (2024). The Future of Coconut as an Economic Crop WorldWide. In The Coconut: Botany, Production and Uses. CABI, Great Britain: 206–230. https://doi.org/10.1079/9781789249736.0014

Karunakaran, P., Osman, M.S., Karunakaran, S., & Karunakaran, A. (2023). Optimized design and development of a coconut meat extraction mechanism after weighing the cost and benefit to the environment. E3S Web of Conferences, 405, 2004. https://doi.org/10.1051/e3sconf/202340502004

Khan, S.A., Chakraborty, S., Dash, K.K., Dar, A.H., Shawl, F., Dash, S.K., Singh, S.K., Dwivedi, M., & Barik, D. (2024). Review of solar greenhouse drying systems in conjunction with hybrid technological features, designs, operations, and economic implications for agro‐food product processing application. Energy Technology, 12(8), 2400176. https://doi.org/10.1002/ente.202400176

Laveyne, J.I., Bozalakov, D., Van Eetvelde, G., & Vandevelde, L. (2020). Impact of solar panel orientation on the integration of solar energy in low‐voltage distribution grids. International Journal of Photoenergy, 2020(1), 2412780. https://doi.org/10.1155/2020/2412780

Ledmaoui, Y., El Maghraoui, A., El Aroussi, M., Saadane, R., Chebak, A., & Chehri, A. (2023). Forecasting solar energy production: A comparative study of machine learning algorithms. Energy Reports, 10, 1004–1012. https://doi.org/10.1016/j.egyr.2023.07.042

Li, Z., Yang, J., & Dezfuli, P.A.N. (2021). Study on the influence of light intensity on the performance of solar cell. International Journal of Photoenergy, 2021(1), 6648739. https://doi.org/10.1155/2021/6648739

Mat, K., Abdul Kari, Z., Rusli, N.D., Che Harun, H., Wei, L.S., Rahman, M.M., Khalid, H.N.M., Hanafiah, M.H.M.A., Sukri, S.A.M., Khalif, R.I.A.R., Mohd Zin, Z., Mohd Zainol, M.K., Panadi, M., Mohd Nor, M.F., & Goh, K.W. (2022). Coconut palm: Food, feed, and nutraceutical properties. Animals, 12(16), 2107. https://doi.org/10.3390/ani12162107

Mukherjee, I., & Sovacool, B.K. (2014). Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renewable and Sustainable Energy Reviews, 37, 1–12. https://doi.org/10.1016/j.rser.2014.05.001

Murtius, W.S. (2024). Agro-industrial development and valorization of coconut fruit waste in Indonesia: A review. Open Access Research Journal of Science and Technology, 11(1), 31–38. https://doi.org/10.53022/oarjst.2024.11.1.0063

Muslim, C., & Darwis, V. (2018). Peningkatkan kesejahteraan petani melalui inovasi teknologi produk turunan kelapa dalam di Sulawesi Barat. SEPA: Jurnal Sosial Ekonomi Pertanian Dan Agribisnis, 14(1), 18–27. https://jurnal.uns.ac.id/sepa/article/viewFile/21038/16336

Mustafa, M., Malik, M.O.F., & Maqsoom, A. (2024). Barriers to solar PV adoption in developing countries: multiple regression and analytical hierarchy process approach. Sustainability, 16(3), 1032. https://doi.org/10.3390/su16031032

Nurhaida, Susanti, I., & Puspitasari, D.U. (2023). A comparative analysis of the influence of temperature and wind speed on the efficiency of 100 wp solar panels of monocrystalline and polycrystalline types at Sriwijaya State Polytechnic. International Journal of Research in Vocational Studies (IJRVOCAS), 3(3), 63–73. https://doi.org/10.53893/ijrvocas.v3i3.225

Pangan, J.M.A., Cayanan, T.R.M., Cordon, R.J.R., Mangalus, J.E., Ruado, J.P.M., Canlas, E.M., Canonero, C.M., & Favorito, R. (2024). Design and development of a mobile power charging station via solar and thermoelectric harvesting. International Research Journal of Modernization in Engineering, Technology and Science, 6(6), 1004–1010. https://doi.org/10.56726/IRJMETS58840

Prabhu, C.N., Dhanushkodi, S., & Sudhakar, K. (2025).Sustainable technology for coconut processing: Biomass-powered dryer and performance evaluation. Resultsin Engineering, 25, 104361. https://doi.org/10.1016/j.rineng.2025.104361

Rais, S., Tjiroso, B., Umar, K., Hardi, W., & Pratama, A.S. (2023). Pengujian portable solar cell kapasitas 100 Wp sebagai energi listrik penggerak blower pengering cengkeh 250 Watt. Patria Artha Technological Journal, 7(2), 185-188. https://www.researchgate.net/publication/365470036_Pengujian_Portable_Solar_Cell_Kapasitas_100_WP_Sebagai_Energi_Listrik_Penggerak_Blower_Pengering_Cengkeh_250_Watt

Rani, P., Dubey, A., Kumar, P., & Kumar, A. (2024). Sustainable renewable energy sources for food and dairy processing. In Food Process Engineering and Technology: Safety, Packaging, Nanotechnologies and Human Health (pp. 65–95). Springer. https://doi.org/10.1007/978-981-99-6831-2_4

Samarajeewa, U. (2024). Coconut: Nutritional and Industrial Significance. https://www.intechopen.com/chapters/1179190

Sajil Raj, P.R., Anshadh, A., Samuel, B.T.R., & Ahsana, A.N. (2016). Design of an innovative coconut grating machine using Tinkercad. International Journal of Research in Mechanical Engineering, 4(3), 178–182.

Sameera, Tariq, M., & Rihan, M. (2024). Analysis of the impact of irradiance, temperature and tilt angle on the performance of grid-connected solar power plant. Measurement: Energy, 2, 100007. https://doi.org/10.1016/j.meaene.2024.100007

Senaen, J.P., Rampengan, A., & Tumimomor, F. (2023). Analisis pengaruh intensitas radiasi matahari terhadap tegangan dan arus pada panel surya di Universitas Negeri Manado. Jurnal Arjuna: Publikasi Ilmu Pendidikan, Bahasa dan Matematika, 1(6), 220–231. https://doi.org/10.61132/arjuna.v1i6.327

Setyawan, A., & Ulinuha, A. (2022). Pembangkit listrik tenaga surya off grid untuk supply charge station. Transmisi: Jurnal Ilmiah Teknik Elektro, 24(1), 23-28. https://doi.org/10.14710/transmisi.24.1.23-28

Sunarsono, H., Rahmiati, S., & Mardiansyah, Y. (2023). Solution for battery charging by providing an optimum angle of solar panel during monsoon season. AIP Conference Proceedings, 2665, 020007. https://doi.org/10.1063/5.0134652

Tilahun, F.B. (2024). Fuzzy-based predictive deep reinforcement learning for robust and constrained optimal control of industrial solar thermal plants. Applied Soft Computing, 159, 111432. https://doi.org/10.1016/j.asoc.2024.111432

Ukoba, K., Yoro, K.O., Eterigho-Ikelegbe, O., Ibegbulam, C., & Jen, T.-C. (2024). Adaptation of solar power in the Global South: Prospects, challenges and opportunities. Heliyon, 10(7), e28009. https://doi.org/10.1016/j.heliyon.2024.e28009

Venkateswari, R., & Sreejith, S. (2019). Factors influencing the efficiency of photovoltaic system. Renewable and Sustainable Energy Reviews, 101, 376–394. https://doi.org/10.1016/j.rser.2018.11.012

Downloads

Published

2025-10-16

How to Cite

Asbanu, H., Esye, Y., Chan, Y., & Faturachman, D. (2025). Application of Solar Energy for Coconut Grating Machine in Rural Areas. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(5), 1767–1777. https://doi.org/10.23960/jtepl.v14i5.1767-1777