Application of Solar Energy for Coconut Grating Machine in Rural Areas
DOI:
https://doi.org/10.23960/jtepl.v14i5.1767-1777
Abstract View: 129
Keywords:
Appropriate technology, Coconut processing, Grating machine, Renewable energyAbstract
Manual processing of coconut and the expensive gasoline force farmers to sell copra at low prices. This study explores the potential use of solar energy for operating coconut grating machines. The experiment utilized a 100 Wp solar panel to run a coconut grating machine driven using ¼ HP electric motor. The observation parameters included solar irradiance, power, voltage, current, battery charging duration, and energy efficiency. The results indicate that a 100 Wp solar panel is insufficient to meet the power requirements of the 186 W electric motor. Therefore, adding at least two solar panels and increasing the battery capacity must meet the machine's operational requirements. The battery charging time, until complete, is recorded at 16 h. Without the support of solar panels, the battery can operate the machine for 3 to 4 h. Meanwhile, when the battery is recharged while the machine operates with the solar panel system, the operating duration can reach 6 to 7 h. Therefore, solar energy demonstrates great potential as a renewable energy solution that can be utilized in the agricultural processing process in rural areas in a sustainable and environmentally friendly manner. Testing of the coconut grating machine powered by solar energy, supported by a 12V 100Ah battery and a 1/4 HP motor, showed that it can operate for approximately 3.8 h in a single work cycle. With a grating duration of 2.6 min per coconut, the system can grate up to approximately 87 coconuts per operational cycle.
Downloads
References
Adekola, K.A. (2014). Optimum processing parameters for coconut oil expression. Agricultural Engineering International: CIGR Journal, 16(4), 240–244. https://cigrjournal.org/index.php/Ejounral/article/view/2977
Andriansyah, D., Ismail, R.M.L., Maryanti, R.S., Fazal, K.F., & Puspita, K.S. (2024). Mengoptimalkan potensi kelapa untuk meningkatkan perekonomian masyarakat Desa Gunungsari. Rudence: Rural Development for Economic Resilience, 3(2), 49–54. https://rudence-feb.unpak.ac.id/index.php/rudence/article/view/68
Armghan, A., Logeshwaran, J., Raja, S., Aliqab, K., Alsharari, M., & Patel, S.K. (2024). Performance optimization of energy-efficient solar absorbers for thermal energy harvesting in modern industrial environments using a solar deep learning model. Heliyon, 10(4), e26371. https://doi.org/10.1016/j.heliyon.2024.e26371
Atienza, A.H., Arce, J.L., Banawa, K.I., & Rabanal, M.C.T. (2025). Design and performance assessment of a combined grater and milk extraction mechanism for coconut meat. Journal of Physics: Conference Series, 2947(1), 12007. https://doi.org/10.1088/1742-6596/2947/1/012007
Badea, A.-M., Manaila-Maximean, D., Fara, L., & Craciunescu, D. (2025). Maximizing solar photovoltaic energy efficiency: MPPT techniques investigation based on shading effects. Solar Energy, 285, 113082. https://doi.org/10.1016/j.solener.2024.113082
Das, A.K., Shill, D.C., & Chatterjee, S. (2022). Coconut oil for utility transformers–Environmental safety and sustainability perspectives. Renewable and Sustainable Energy Reviews, 164, 112572. https://doi.org/10.1016/j.rser.2022.112572
Dewantara, B.Y. (2019). Perancangan perahu nelayan ramah lingkungan menggunakan motor listrik bertenaga surya. Cyclotron, 2(1). https://doi.org/10.30651/cl.v2i1.2530
Elibol, E., Özmen, Ö.T., Tutkun, N., & Köysal, O. (2017). Outdoor performance analysis of different PV panel types. Renewable and Sustainable Energy Reviews, 67, 651-661. https://doi.org/10.1016/j.rser.2016.09.051
Hariningrum, R. (2021). Analisa pengaruh sudut kemiringan panel surya 100 Wp terhadap daya listrik. Marine Science and Technology Journal, 1(2), 67–76. https://e-journal.ivet.ac.id/index.php/maristec/article/view/1585
Hill, C.A., Such, M.C., Chen, D., Gonzalez, J., & Grady, W.M. (2012). Battery energy storage for enabling integration of distributed solar power generation. IEEE Transactions on Smart Grid, 3(2), 850–857. https://doi.org/10.1109/TSG.2012.2190113
Johnson, V.B., Aguilar, E.A., Alouw, J., Biddle, J.M., Lacsina, J.C., & Manohar, E.C. (2024). The Future of Coconut as an Economic Crop WorldWide. In The Coconut: Botany, Production and Uses. CABI, Great Britain: 206–230. https://doi.org/10.1079/9781789249736.0014
Karunakaran, P., Osman, M.S., Karunakaran, S., & Karunakaran, A. (2023). Optimized design and development of a coconut meat extraction mechanism after weighing the cost and benefit to the environment. E3S Web of Conferences, 405, 2004. https://doi.org/10.1051/e3sconf/202340502004
Khan, S.A., Chakraborty, S., Dash, K.K., Dar, A.H., Shawl, F., Dash, S.K., Singh, S.K., Dwivedi, M., & Barik, D. (2024). Review of solar greenhouse drying systems in conjunction with hybrid technological features, designs, operations, and economic implications for agro‐food product processing application. Energy Technology, 12(8), 2400176. https://doi.org/10.1002/ente.202400176
Laveyne, J.I., Bozalakov, D., Van Eetvelde, G., & Vandevelde, L. (2020). Impact of solar panel orientation on the integration of solar energy in low‐voltage distribution grids. International Journal of Photoenergy, 2020(1), 2412780. https://doi.org/10.1155/2020/2412780
Ledmaoui, Y., El Maghraoui, A., El Aroussi, M., Saadane, R., Chebak, A., & Chehri, A. (2023). Forecasting solar energy production: A comparative study of machine learning algorithms. Energy Reports, 10, 1004–1012. https://doi.org/10.1016/j.egyr.2023.07.042
Li, Z., Yang, J., & Dezfuli, P.A.N. (2021). Study on the influence of light intensity on the performance of solar cell. International Journal of Photoenergy, 2021(1), 6648739. https://doi.org/10.1155/2021/6648739
Mat, K., Abdul Kari, Z., Rusli, N.D., Che Harun, H., Wei, L.S., Rahman, M.M., Khalid, H.N.M., Hanafiah, M.H.M.A., Sukri, S.A.M., Khalif, R.I.A.R., Mohd Zin, Z., Mohd Zainol, M.K., Panadi, M., Mohd Nor, M.F., & Goh, K.W. (2022). Coconut palm: Food, feed, and nutraceutical properties. Animals, 12(16), 2107. https://doi.org/10.3390/ani12162107
Mukherjee, I., & Sovacool, B.K. (2014). Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renewable and Sustainable Energy Reviews, 37, 1–12. https://doi.org/10.1016/j.rser.2014.05.001
Murtius, W.S. (2024). Agro-industrial development and valorization of coconut fruit waste in Indonesia: A review. Open Access Research Journal of Science and Technology, 11(1), 31–38. https://doi.org/10.53022/oarjst.2024.11.1.0063
Muslim, C., & Darwis, V. (2018). Peningkatkan kesejahteraan petani melalui inovasi teknologi produk turunan kelapa dalam di Sulawesi Barat. SEPA: Jurnal Sosial Ekonomi Pertanian Dan Agribisnis, 14(1), 18–27. https://jurnal.uns.ac.id/sepa/article/viewFile/21038/16336
Mustafa, M., Malik, M.O.F., & Maqsoom, A. (2024). Barriers to solar PV adoption in developing countries: multiple regression and analytical hierarchy process approach. Sustainability, 16(3), 1032. https://doi.org/10.3390/su16031032
Nurhaida, Susanti, I., & Puspitasari, D.U. (2023). A comparative analysis of the influence of temperature and wind speed on the efficiency of 100 wp solar panels of monocrystalline and polycrystalline types at Sriwijaya State Polytechnic. International Journal of Research in Vocational Studies (IJRVOCAS), 3(3), 63–73. https://doi.org/10.53893/ijrvocas.v3i3.225
Pangan, J.M.A., Cayanan, T.R.M., Cordon, R.J.R., Mangalus, J.E., Ruado, J.P.M., Canlas, E.M., Canonero, C.M., & Favorito, R. (2024). Design and development of a mobile power charging station via solar and thermoelectric harvesting. International Research Journal of Modernization in Engineering, Technology and Science, 6(6), 1004–1010. https://doi.org/10.56726/IRJMETS58840
Prabhu, C.N., Dhanushkodi, S., & Sudhakar, K. (2025).Sustainable technology for coconut processing: Biomass-powered dryer and performance evaluation. Resultsin Engineering, 25, 104361. https://doi.org/10.1016/j.rineng.2025.104361
Rais, S., Tjiroso, B., Umar, K., Hardi, W., & Pratama, A.S. (2023). Pengujian portable solar cell kapasitas 100 Wp sebagai energi listrik penggerak blower pengering cengkeh 250 Watt. Patria Artha Technological Journal, 7(2), 185-188. https://www.researchgate.net/publication/365470036_Pengujian_Portable_Solar_Cell_Kapasitas_100_WP_Sebagai_Energi_Listrik_Penggerak_Blower_Pengering_Cengkeh_250_Watt
Rani, P., Dubey, A., Kumar, P., & Kumar, A. (2024). Sustainable renewable energy sources for food and dairy processing. In Food Process Engineering and Technology: Safety, Packaging, Nanotechnologies and Human Health (pp. 65–95). Springer. https://doi.org/10.1007/978-981-99-6831-2_4
Samarajeewa, U. (2024). Coconut: Nutritional and Industrial Significance. https://www.intechopen.com/chapters/1179190
Sajil Raj, P.R., Anshadh, A., Samuel, B.T.R., & Ahsana, A.N. (2016). Design of an innovative coconut grating machine using Tinkercad. International Journal of Research in Mechanical Engineering, 4(3), 178–182.
Sameera, Tariq, M., & Rihan, M. (2024). Analysis of the impact of irradiance, temperature and tilt angle on the performance of grid-connected solar power plant. Measurement: Energy, 2, 100007. https://doi.org/10.1016/j.meaene.2024.100007
Senaen, J.P., Rampengan, A., & Tumimomor, F. (2023). Analisis pengaruh intensitas radiasi matahari terhadap tegangan dan arus pada panel surya di Universitas Negeri Manado. Jurnal Arjuna: Publikasi Ilmu Pendidikan, Bahasa dan Matematika, 1(6), 220–231. https://doi.org/10.61132/arjuna.v1i6.327
Setyawan, A., & Ulinuha, A. (2022). Pembangkit listrik tenaga surya off grid untuk supply charge station. Transmisi: Jurnal Ilmiah Teknik Elektro, 24(1), 23-28. https://doi.org/10.14710/transmisi.24.1.23-28
Sunarsono, H., Rahmiati, S., & Mardiansyah, Y. (2023). Solution for battery charging by providing an optimum angle of solar panel during monsoon season. AIP Conference Proceedings, 2665, 020007. https://doi.org/10.1063/5.0134652
Tilahun, F.B. (2024). Fuzzy-based predictive deep reinforcement learning for robust and constrained optimal control of industrial solar thermal plants. Applied Soft Computing, 159, 111432. https://doi.org/10.1016/j.asoc.2024.111432
Ukoba, K., Yoro, K.O., Eterigho-Ikelegbe, O., Ibegbulam, C., & Jen, T.-C. (2024). Adaptation of solar power in the Global South: Prospects, challenges and opportunities. Heliyon, 10(7), e28009. https://doi.org/10.1016/j.heliyon.2024.e28009
Venkateswari, R., & Sreejith, S. (2019). Factors influencing the efficiency of photovoltaic system. Renewable and Sustainable Energy Reviews, 101, 376–394. https://doi.org/10.1016/j.rser.2018.11.012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Husen Asbanu, Yendi Esye, Yefri Chan, Danny Faturachman

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung

JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


