Liquid Smoke Derived from Sago Processing Solid Waste: Organic Compound Composition and Its Application for Ironwood (Intsia bijuga) Seedlings
DOI:
https://doi.org/10.23960/jtepl.v15i1.101-109
Abstract View: 13
Keywords:
Hydrazine, Merbau, Monocotyledons, Nutrients, UltisolAbstract
Liquid smoke derived from sago processing solid waste can be utilized in various applications, depending on the raw materials and pyrolysis conditions. This study aimed to identify the chemical compounds present in liquid smoke from sago processing waste and to evaluate their effects on the growth of ironwood (Intsia bijuga) seedlings. Liquid smoke was produced through a slow pyrolysis process with an average temperature increase of 1.5–1.8 °C/min. Gas chromatography–mass spectrometry (GC–MS) analysis was used to determine the chemical composition of the liquid smoke. The liquid smoke was applied to ironwood seedlings using three treatments: without liquid smoke (AC 0), a mixture of liquid smoke and water at a ratio of 1:20 (AC 1), and 1:200 (AC 2). Observations focused on seedling height, stem diameter, and number of leaves. The results showed that liquid smoke from sago processing waste contained various organic compounds, including acids, ketones, phenolics, furans, ethers, and other related compounds, with acetic acid being the dominant component. However, the application of liquid smoke did not significantly affect the growth parameters of ironwood seedlings.
Downloads
References
Aguirre, J., Baena, J., Martín, M., Nozal, L., González, S., Manjón, J., & Peinado, M. (2020). Composition, ageing and herbicidal properties of wood vinegar obtained through fast biomass pyrolysis. Energies, 13(10), 2418. https://doi.org/10.3390/en13102418
Alfiah, R.R., Khotimah, S., & Turnip, M. (2015). Efektivitas ekstrak metanol daun sembung rambat (Mikania micrantha Kunth) terhadap pertumbuhan jamur Candida albicans. Protobiont, 4(1), 52–57.
Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Second Edition. Academic Press, London.
Bhuyan, N., Narzari, R., Baruah, S., & Kataki, R. (2022). Comparative assessment of artificial neural network and response surface methodology for evaluation of the predictive capability on bio-oil yield of Tithonia diversifolia pyrolysis. Biomass Conversion and Biorefinery, 12(6), 2203–2218. https://doi.org/10.1007/s13399-020-00806-x
Chu, L., Liu, H., Zhang, Z., Zhan, Y., Wang, K., Yang, D., Liu, Z., & Yu, J. (2022). Evaluation of wood vinegar as an herbicide for weed control. Agronomy, 12(12), 3120. https://doi.org/10.3390/agronomy12123120
Crespo, Y.A., Naranjo, R.A., Quitana, Y.G., Sanchez, C.G., & Sanchez, E.M.S. (2017). Optimisation and characterisation of bio-oil produced by Acacia mangium Willd wood pyrolysis. Wood Science and Technology, 51(5), 1155–1171. https://doi.org/10.1007/s00226-017-0913-x
de Medeiros, L.C.D., Pimenta, A.S., Braga, R.M., de Azevedo Carnaval, T.K., Neto, P.N.M., & de Araujo Melo, D.M. (2019). Effect of pyrolysis heating rate on the chemical composition of wood vinegar from Eucalyptus urograndis and Mimosa tenuiflora. Revista Arvore, 43(4). https://doi.org/10.1590/1806-90882019000400008
Dilla, A., Amini, D.S., Fadhilah, H., Fitri, W., Fevria, R., & Des, M. (2023). Pertumbuhan dan perkembangan jaringan meristem pada tanaman. Prosiding Seminar Nasional Biologi, 3(1), 730–737.
Ebrahimi, G., Shakeri, A., Ahmadi, P., Dalvand, M., Shafie, M., & Hosseinabadi, H.Z. (2022). Chemical constituents of palm wastes slow pyrolysis derived vinegar. Maderas: Ciencia y Tecnologia, 24(47), 1–8. https://doi.org/10.4067/S0718-221X2022000100447
Grewal, A., Abbey, L., & Gunupuru, L.R. (2018). Production, prospects and potential application of pyroligneous acid in agriculture. Journal of Analytical and Applied Pyrolysis, 135, 152–159. https://doi.org/10.1016/j.jaap.2018.09.008
Gurusinga, S.C., Siruru, H., & Titarsole, J. (2023). Kualitas briket arang limbah sagu (Metroxylon Sp.) menggunakan perekat tepung sagu. Jurnal Tengkawang, 13(1), 57–68.
Hagner, M. (2013). Potential of the Slow Pyrolysis Products Birch Tar Oil, Wood Vinegar and Biochar in Sustainable Plant Protection : Pesticidal Effects, Soil Improvement and Environmental Risks. [Doctoral Theses]. Department of Environmental Sciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland.
Iacomino, G., Idbella, M., Staropoli, A., Nanni, B., Bertoli, T., Vinale, F., & Bonanomi, G. (2024). Exploring the potential of wood vinegar: Chemical composition and biological effects on crops and pests. Agronomy, 14(1), 114. https://doi.org/10.3390/agronomy14010114
Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition — Current knowledge and future directions. Frontiers in Plant Science, 8, 1617. https://doi.org/10.3389/fpls.2017.01617
Ju, Y.C., Zhang, X., Jong, C., Yun, T.H., Ri, I., Son, C.H., & Chae, K.C. (2021). Effects of wood vinegar and bio char on germination of pakchoi seeds under different cadmium stress conditions. International Journal of Scientific Research in Science and Technology, 8(3), 267–281. https://doi.org/10.32628/ijsrst218340
Karjadi, A.K., Karjadi, & Gunaeni, N. (2022). The effect of antiviral ribavirin, explant size, varieties on growth and development in potato meristematic. IOP Conference Series: Earth and Environmental Science, 985, 012022. https://doi.org/10.1088/1755-1315/985/1/012022
Kizza, R., Banadda, N., Kabenge, I., Seay, J., Willet, S., Kiggundu, N., & Zziwa, A. (2019). Pyrolysis of wood residues in a cylindrical batch reactor: Effect of operating parameters on the quality and yield of products. Journal of Sustainable Development, 12(5), 112-130. https://doi.org/10.5539/jsd.v12n5p112
Koç, I., Öğün, E., Namli, A., Mendeş, M., Kutlu, E., & Yardim, E.N. (2019). The effects of wood vinegar on some soil micro-organisms. Applied Ecology and Environmental Research, 17(2), 2437–2447. https://doi.org/10.15666/aeer/1702_24372447
Koraag, M., Kurniawan, A., Pawakkangi, S., Pamela, P., & Sumolang, F. (2020). The efficacy of wood vinegar against Oncomelania hupensis lindoensis snails vector of schistosomiasis. Proceedings of the 5th Universitas Ahmad Dahlan Public Health Conference (UPHEC 2019), 268-271. https://doi.org/10.2991/ahsr.k.200311.051
Luo, X., Wang, Z., Meki, K., Wang, X., Liu, B., Zheng, H., You, X., & Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 19(12), 3934–3944. https://doi.org/10.1007/s11368-019-02365-9
Mahdie, M.F., Violet, V., & Helmi, M. (2020). Rendement and characteristics of wood vinegar produced from ironwood delinquent waste through clay kiln charcoaling furnace. Journal of Wetlands Environmental Management, 8(2), 140-148.
Malvini, I.K.D., & Nurjasmin, R. (2019). Pengaruh perlakuan asap cair terhadap Plutella xylostella L. pada tanaman sawi pakcoy (Brassica rapa L.). Jurnal Ilmiah Respati, 10(2), 104-114.
Omulo, G., Willett, S., Seay, J., Banadda, N., Kabenge, I., Zziwa, A., & Kiggundu, N. (2017). Characterization of slow pyrolysis wood vinegar and tar from banana wastes biomass as potential organic pesticides. Journal of Sustainable Development, 10(3), 81-92. https://doi.org/10.5539/jsd.v10n3p81
Oramahi, H.A., Kustiati, K., & Wardoyo, E.R.P. (2022). Optimization of liquid smoke from Shorea pachyphylla using response surface methodology and its characterization. Science and Technology Indonesia, 7(2), 257-262. https://doi.org/10.26554/sti.2022.7.2.257-262
Oramahi, H.A., Rusmiyanto, E., & Kustiati, K. (2021). Optimization of wood vinegar from pyrolysis of jelutung wood (Dyera lowii Hook) by using response surface methodology. Journal of Physics: Conf. Series, 1940, 012062. https://doi.org/10.1088/1742-6596/1940/1/012062
Oramahi, H.A., Yoshimura, T., Rusmiyanto, E., & Kustiati, K. (2020). Optimization and characterization of wood vinegar produced by Shorea laevis Ridl wood pyrolysis. Indonesian Journal of Chemistry, 20(4), 825–832. https://doi.org/10.22146/ijc.45783
Purwantisari, S., Sari, D.M.S.P., Risnanda, M.A., Khanifah, N.N., Amatullah, L.H., & Mahardhika, W.A. (2023). Potensi asap cair tempurung kelapa sebagai antijamur Fusarium foetens, Fusarium moniliforme, dan Colletotrichum capsica. Jurnal Penelitian Hasil Hutan, 40(2), 69–78. https://doi.org/10.55981/jphh.2023.998
Putri, A.M., Violet, V., & Sari, N.M. (2022). Sifat fisik dan identifikasi kandungan senyawa kimia cuka kayu (Wood Vinegar) Alaban. Jurnal Sylva Scienteae, 5(6), 878-885. https://doi.org/10.20527/jss.v5i6.7129
Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 183, 26–41. https://doi.org/10.1016/j.micres.2015.11.007
Shen, R., Zhao, L., Yao, Z., Feng, J., Jing, Y., & Watson, J. (2020). Efficient treatment of wood vinegar via microbial electrolysis cell with the anode of different pyrolysis biochars. Frontiers in Energy Research, 8, 216. https://doi.org/10.3389/fenrg.2020.00216
Siruru, H. (2021). Arang Aktif Limbah Sagu Sebagai Media Pupuk Lepas Lambat. [Doctoral Theses]. IPB University, Bogor.
Siruru, H., Syafii, W., Wistara, I.N.J., & Pari, G. (2019). Characteristics of Metroxylon rumphii (pith and bark waste) from Seram Island, Maluku, Indonesia. Biodiversitas, 20(12), 3517–3526. https://doi.org/10.13057/biodiv/d201208
Siruru, H., Syafii, W., Wistara, N.J., & Pari, G. (2018). Pengaruh durasi steam terhadap kualitas arang aktif limbah sagu. Jurnal Ilmu dan Teknologi Kayu Tropis, 16(2), 115-130.
Theapparat, Y., Chandumpai, A., & Faroongsarng, D. (2018). Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. In Tropical Forests. InTech, 163–183. https://doi.org/10.5772/intechopen.77380
Xu, J., Lin, C., Zhang, S., Shi, Y., Zhang, P., Huang, D., & Wu, Y. (2022). Upgrading the wood vinegar prepared from the pyrolysis of biomass wastes by hydrothermal pretreatment. Energy, 244, 122631. https://doi.org/10.1016/j.energy.2021.122631
Zhu, K., Gu, S., Liu, J., Luo, T., Khan, Z., Zhang, K., & Hu, L. (2021). Wood vinegar as a complex growth regulator promotes the growth, yield, and quality of rapeseed. Agronomy, 11(3), 510. https://doi.org/10.3390/agronomy11030510
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Herman - Siruru

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung

JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


