Liquid Smoke Derived from Sago Processing Solid Waste: Organic Compound Composition and Its Application for Ironwood (Intsia bijuga) Seedlings

Authors

  • Herman Siruru Universitas Pattimura
  • Wilma Nancy Imlabla Badan Riset dan Inovasi Nasional (BRIN)
  • Ismail Budiman Badan Riset dan Inovasi Nasional (BRIN)

DOI:

https://doi.org/10.23960/jtepl.v15i1.101-109
Abstract View: 13

Keywords:

Hydrazine, Merbau, Monocotyledons, Nutrients, Ultisol

Abstract

Liquid smoke derived from sago processing solid waste can be utilized in various applications, depending on the raw materials and pyrolysis conditions. This study aimed to identify the chemical compounds present in liquid smoke from sago processing waste and to evaluate their effects on the growth of ironwood (Intsia bijuga) seedlings. Liquid smoke was produced through a slow pyrolysis process with an average temperature increase of 1.5–1.8 °C/min. Gas chromatography–mass spectrometry (GC–MS) analysis was used to determine the chemical composition of the liquid smoke. The liquid smoke was applied to ironwood seedlings using three treatments: without liquid smoke (AC 0), a mixture of liquid smoke and water at a ratio of 1:20 (AC 1), and 1:200 (AC 2). Observations focused on seedling height, stem diameter, and number of leaves. The results showed that liquid smoke from sago processing waste contained various organic compounds, including acids, ketones, phenolics, furans, ethers, and other related compounds, with acetic acid being the dominant component. However, the application of liquid smoke did not significantly affect the growth parameters of ironwood seedlings.

Downloads

Download data is not yet available.

Author Biographies

Herman Siruru, Universitas Pattimura

Department of Forestry, Faculty of Agriculture

Wilma Nancy Imlabla, Badan Riset dan Inovasi Nasional (BRIN)

Pusat Riset Biomassa dan Bioproduk

Ismail Budiman, Badan Riset dan Inovasi Nasional (BRIN)

Pusat Riset Biomassa dan Bioproduk

References

Aguirre, J., Baena, J., Martín, M., Nozal, L., González, S., Manjón, J., & Peinado, M. (2020). Composition, ageing and herbicidal properties of wood vinegar obtained through fast biomass pyrolysis. Energies, 13(10), 2418. https://doi.org/10.3390/en13102418

Alfiah, R.R., Khotimah, S., & Turnip, M. (2015). Efektivitas ekstrak metanol daun sembung rambat (Mikania micrantha Kunth) terhadap pertumbuhan jamur Candida albicans. Protobiont, 4(1), 52–57.

Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Second Edition. Academic Press, London.

Bhuyan, N., Narzari, R., Baruah, S., & Kataki, R. (2022). Comparative assessment of artificial neural network and response surface methodology for evaluation of the predictive capability on bio-oil yield of Tithonia diversifolia pyrolysis. Biomass Conversion and Biorefinery, 12(6), 2203–2218. https://doi.org/10.1007/s13399-020-00806-x

Chu, L., Liu, H., Zhang, Z., Zhan, Y., Wang, K., Yang, D., Liu, Z., & Yu, J. (2022). Evaluation of wood vinegar as an herbicide for weed control. Agronomy, 12(12), 3120. https://doi.org/10.3390/agronomy12123120

Crespo, Y.A., Naranjo, R.A., Quitana, Y.G., Sanchez, C.G., & Sanchez, E.M.S. (2017). Optimisation and characterisation of bio-oil produced by Acacia mangium Willd wood pyrolysis. Wood Science and Technology, 51(5), 1155–1171. https://doi.org/10.1007/s00226-017-0913-x

de Medeiros, L.C.D., Pimenta, A.S., Braga, R.M., de Azevedo Carnaval, T.K., Neto, P.N.M., & de Araujo Melo, D.M. (2019). Effect of pyrolysis heating rate on the chemical composition of wood vinegar from Eucalyptus urograndis and Mimosa tenuiflora. Revista Arvore, 43(4). https://doi.org/10.1590/1806-90882019000400008

Dilla, A., Amini, D.S., Fadhilah, H., Fitri, W., Fevria, R., & Des, M. (2023). Pertumbuhan dan perkembangan jaringan meristem pada tanaman. Prosiding Seminar Nasional Biologi, 3(1), 730–737.

Ebrahimi, G., Shakeri, A., Ahmadi, P., Dalvand, M., Shafie, M., & Hosseinabadi, H.Z. (2022). Chemical constituents of palm wastes slow pyrolysis derived vinegar. Maderas: Ciencia y Tecnologia, 24(47), 1–8. https://doi.org/10.4067/S0718-221X2022000100447

Grewal, A., Abbey, L., & Gunupuru, L.R. (2018). Production, prospects and potential application of pyroligneous acid in agriculture. Journal of Analytical and Applied Pyrolysis, 135, 152–159. https://doi.org/10.1016/j.jaap.2018.09.008

Gurusinga, S.C., Siruru, H., & Titarsole, J. (2023). Kualitas briket arang limbah sagu (Metroxylon Sp.) menggunakan perekat tepung sagu. Jurnal Tengkawang, 13(1), 57–68.

Hagner, M. (2013). Potential of the Slow Pyrolysis Products Birch Tar Oil, Wood Vinegar and Biochar in Sustainable Plant Protection : Pesticidal Effects, Soil Improvement and Environmental Risks. [Doctoral Theses]. Department of Environmental Sciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland.

Iacomino, G., Idbella, M., Staropoli, A., Nanni, B., Bertoli, T., Vinale, F., & Bonanomi, G. (2024). Exploring the potential of wood vinegar: Chemical composition and biological effects on crops and pests. Agronomy, 14(1), 114. https://doi.org/10.3390/agronomy14010114

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition — Current knowledge and future directions. Frontiers in Plant Science, 8, 1617. https://doi.org/10.3389/fpls.2017.01617

Ju, Y.C., Zhang, X., Jong, C., Yun, T.H., Ri, I., Son, C.H., & Chae, K.C. (2021). Effects of wood vinegar and bio char on germination of pakchoi seeds under different cadmium stress conditions. International Journal of Scientific Research in Science and Technology, 8(3), 267–281. https://doi.org/10.32628/ijsrst218340

Karjadi, A.K., Karjadi, & Gunaeni, N. (2022). The effect of antiviral ribavirin, explant size, varieties on growth and development in potato meristematic. IOP Conference Series: Earth and Environmental Science, 985, 012022. https://doi.org/10.1088/1755-1315/985/1/012022

Kizza, R., Banadda, N., Kabenge, I., Seay, J., Willet, S., Kiggundu, N., & Zziwa, A. (2019). Pyrolysis of wood residues in a cylindrical batch reactor: Effect of operating parameters on the quality and yield of products. Journal of Sustainable Development, 12(5), 112-130. https://doi.org/10.5539/jsd.v12n5p112

Koç, I., Öğün, E., Namli, A., Mendeş, M., Kutlu, E., & Yardim, E.N. (2019). The effects of wood vinegar on some soil micro-organisms. Applied Ecology and Environmental Research, 17(2), 2437–2447. https://doi.org/10.15666/aeer/1702_24372447

Koraag, M., Kurniawan, A., Pawakkangi, S., Pamela, P., & Sumolang, F. (2020). The efficacy of wood vinegar against Oncomelania hupensis lindoensis snails vector of schistosomiasis. Proceedings of the 5th Universitas Ahmad Dahlan Public Health Conference (UPHEC 2019), 268-271. https://doi.org/10.2991/ahsr.k.200311.051

Luo, X., Wang, Z., Meki, K., Wang, X., Liu, B., Zheng, H., You, X., & Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 19(12), 3934–3944. https://doi.org/10.1007/s11368-019-02365-9

Mahdie, M.F., Violet, V., & Helmi, M. (2020). Rendement and characteristics of wood vinegar produced from ironwood delinquent waste through clay kiln charcoaling furnace. Journal of Wetlands Environmental Management, 8(2), 140-148.

Malvini, I.K.D., & Nurjasmin, R. (2019). Pengaruh perlakuan asap cair terhadap Plutella xylostella L. pada tanaman sawi pakcoy (Brassica rapa L.). Jurnal Ilmiah Respati, 10(2), 104-114.

Omulo, G., Willett, S., Seay, J., Banadda, N., Kabenge, I., Zziwa, A., & Kiggundu, N. (2017). Characterization of slow pyrolysis wood vinegar and tar from banana wastes biomass as potential organic pesticides. Journal of Sustainable Development, 10(3), 81-92. https://doi.org/10.5539/jsd.v10n3p81

Oramahi, H.A., Kustiati, K., & Wardoyo, E.R.P. (2022). Optimization of liquid smoke from Shorea pachyphylla using response surface methodology and its characterization. Science and Technology Indonesia, 7(2), 257-262. https://doi.org/10.26554/sti.2022.7.2.257-262

Oramahi, H.A., Rusmiyanto, E., & Kustiati, K. (2021). Optimization of wood vinegar from pyrolysis of jelutung wood (Dyera lowii Hook) by using response surface methodology. Journal of Physics: Conf. Series, 1940, 012062. https://doi.org/10.1088/1742-6596/1940/1/012062

Oramahi, H.A., Yoshimura, T., Rusmiyanto, E., & Kustiati, K. (2020). Optimization and characterization of wood vinegar produced by Shorea laevis Ridl wood pyrolysis. Indonesian Journal of Chemistry, 20(4), 825–832. https://doi.org/10.22146/ijc.45783

Purwantisari, S., Sari, D.M.S.P., Risnanda, M.A., Khanifah, N.N., Amatullah, L.H., & Mahardhika, W.A. (2023). Potensi asap cair tempurung kelapa sebagai antijamur Fusarium foetens, Fusarium moniliforme, dan Colletotrichum capsica. Jurnal Penelitian Hasil Hutan, 40(2), 69–78. https://doi.org/10.55981/jphh.2023.998

Putri, A.M., Violet, V., & Sari, N.M. (2022). Sifat fisik dan identifikasi kandungan senyawa kimia cuka kayu (Wood Vinegar) Alaban. Jurnal Sylva Scienteae, 5(6), 878-885. https://doi.org/10.20527/jss.v5i6.7129

Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 183, 26–41. https://doi.org/10.1016/j.micres.2015.11.007

Shen, R., Zhao, L., Yao, Z., Feng, J., Jing, Y., & Watson, J. (2020). Efficient treatment of wood vinegar via microbial electrolysis cell with the anode of different pyrolysis biochars. Frontiers in Energy Research, 8, 216. https://doi.org/10.3389/fenrg.2020.00216

Siruru, H. (2021). Arang Aktif Limbah Sagu Sebagai Media Pupuk Lepas Lambat. [Doctoral Theses]. IPB University, Bogor.

Siruru, H., Syafii, W., Wistara, I.N.J., & Pari, G. (2019). Characteristics of Metroxylon rumphii (pith and bark waste) from Seram Island, Maluku, Indonesia. Biodiversitas, 20(12), 3517–3526. https://doi.org/10.13057/biodiv/d201208

Siruru, H., Syafii, W., Wistara, N.J., & Pari, G. (2018). Pengaruh durasi steam terhadap kualitas arang aktif limbah sagu. Jurnal Ilmu dan Teknologi Kayu Tropis, 16(2), 115-130.

Theapparat, Y., Chandumpai, A., & Faroongsarng, D. (2018). Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. In Tropical Forests. InTech, 163–183. https://doi.org/10.5772/intechopen.77380

Xu, J., Lin, C., Zhang, S., Shi, Y., Zhang, P., Huang, D., & Wu, Y. (2022). Upgrading the wood vinegar prepared from the pyrolysis of biomass wastes by hydrothermal pretreatment. Energy, 244, 122631. https://doi.org/10.1016/j.energy.2021.122631

Zhu, K., Gu, S., Liu, J., Luo, T., Khan, Z., Zhang, K., & Hu, L. (2021). Wood vinegar as a complex growth regulator promotes the growth, yield, and quality of rapeseed. Agronomy, 11(3), 510. https://doi.org/10.3390/agronomy11030510

Downloads

Published

2026-02-06

How to Cite

Siruru, H., Imlabla, W. N., & Budiman, I. . (2026). Liquid Smoke Derived from Sago Processing Solid Waste: Organic Compound Composition and Its Application for Ironwood (Intsia bijuga) Seedlings. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 15(1), 101–109. https://doi.org/10.23960/jtepl.v15i1.101-109