Flood Mitigation Priority Strategy to Reduce Community Vulnerability in the Downstream Area of the Setail Watershed, Banyuwangi

Authors

DOI:

https://doi.org/10.23960/jtepl.v14i6.2216-2228
Abstract View: 35

Keywords:

Analytic Hierarchy Process (AHP), Community vulnerability, Flood, Mitigation, Setail watershed

Abstract

Floods that repeatedly occur in the downstream area of the Setail Watershed have caused significant damage to infrastructure, community livelihoods, and social systems in the region. This condition demands the implementation of effective and sustainable mitigation strategies to reduce flood risks and impacts. This study aims to determine priority flood mitigation strategies to reduce community vulnerability in the downstream area of the Setail Watershed. The identification of mitigation criteria was first conducted through interviews with flood-affected communities to capture relevant local factors. These criteria were then discussed with disaster mitigation experts and stakeholders, and the results of the questionnaires were analyzed using the Analytical Hierarchy Process (AHP) method to evaluate and rank the mitigation strategies. The results show that the three main priority strategies are flood risk mapping with a score of 0.22, community education and awareness with a score of 0.18, and zoning and spatial planning with a score of 0.15. These strategies are expected to serve as the basis for the preparation of local government action plans to minimize future flood impacts and enhance community resilience and well-being.

Downloads

Download data is not yet available.

Author Biographies

Gigik Nurbaskoro, Universitas Jember

Master of Agricultural Water Resources Management Study Program

Indarto, Universitas Jember

Department of Agricultural Engineering

Elida Novita, Universitas Jember

Department of Agricultural Engineering

Mohamad Wawan Sujarwo, Universitas Jember

Department of Agricultural Engineering

References

Agrawal, R., Islam, N., Samadhiya, A., Shukla, V., Kumar, A., & Upadhyay, A. (2025). Paving the way to environmental sustainability: A systematic review to integrate big data analytics into high-stake decision forecasting. Technological Forecasting and Social Change, 214, 124060. https://doi.org/10.1016/j.techfore.2025.124060

Ajin, R.S., Senan, C.P.P.C., Devi, B.R.A., Costache, R., Nagar, J.K., Rajaneesh, A., & Sajinkumar, K.S. (2025). Flood risk mapping in an urbanized tropical river basin in India using MCDA-AHP: A post-storm event evaluation. Smart Construction and Sustainable Cities, 3, 10. https://doi.org/10.1007/s44268-025-00053-x

Berens, A.S., Palmer, T., Dutton, N.D., Lavery, A., & Moore, M. (2021). Using search-constrained inverse distance weight modeling for near real-time riverine flood modeling: Harris County, Texas, USA before, during, and after Hurricane Harvey. Natural Hazards, 105(1), 277–292. https://doi.org/10.1007/s11069-020-04309-w

BNPB (Badan Nasional Penanggulangan Bencana). (2012). Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 02 Tahun 2012 Tentang Pedoman Umum Pengkajian Risiko Bencana.

BPBD (Badan Penanggulangan Bencana Daerah). (2025). Laporan Kejadian Bencana Tahun 2024. Badan Penanggulangan Bencana Daerah Banyuwangi.

BPS (Badan Pusat Statistik). (2024). Kecamatan Muncar Dalam Angka 2023. Badan Pusat Statistik Kabupaten Banyuwangi.

Caporale, D., & Rinaldi, A. (2025). The application of analytical hierarchy process to assess adaptation strategies for flood and landslides risks: A case study of a multi-risk area community. Environmental Science and Policy, 163, 103959. https://doi.org/10.1016/j.envsci.2024.103959

Chaudhary, U., Shah, M.A.R., Shakya, B.M., & Aryal, A. (2024). Flood susceptibility and risk mapping of Kathmandu Valley Watershed, Nepal. Sustainability, 16(16), 7101. https://doi.org/10.3390/su16167101

Dinas PU Jatim. (2022). Pengairan Dalam Angka 2022 Dinas PU Sumber Daya Air Provinsi Jawa Timur. Available from https://dpuair.jatimprov.go.id/asset/dokumen/JbWoO-Draft Pengairan Dalam Angka 2022.pdf

Fernández-Nóvoa, D., González-Cao, J., & García-Feal, O. (2024). Enhancing flood risk management: A comprehensive review on flood early warning systems with emphasis on numerical modeling. Water, 16(10), 1408. https://doi.org/10.3390/w16101408

Isia, I., Hadibarata, T., Jusoh, M.N.H., Bhattacharjya, R.K., Shahedan, N.F., Fitriyani, N.L., & Syafrudin, M. (2023). Identifying factors to develop and validate social vulnerability to floods in Malaysia: A systematic review study. Sustainability, 15(17), 12729. https://doi.org/10.3390/su151712729

Kabenla, R., Ampofo, S., Owusu, G., Atulley, J.A., & Ampadu, B. (2024). Application of Analytical Hierarchy Process (AHP) and Multi-Criteria Evaluation (MCE) for a case study and scenario assessment of flood risk in the White Volta Basin of the Upper East Region, Ghana. Discover Water, 4(1), 90. https://doi.org/10.1007/s43832-024-00143-4

Kanianska, R., Benková, N., Ševčíková, J., Masný, M., Kizeková, M., Jančová, Ľ., & Feng, J. (2022). Fluvisols Contribution to Water Retention Hydrological Ecosystem Services in Different Floodplain Ecosystems. Land, 11(9), 1510. https://doi.org/10.3390/land11091510

Kapucu, N., Ge, Y., Rott, E., & Isgandar, H. (2024). Urban resilience: Multidimensional perspectives, challenges and prospects for future research. Urban Governance, 4(3), 162–179. https://doi.org/10.1016/j.ugj.2024.09.003

Karmegam, D., Ramamoorthy, S., & Mappillairaju, B. (2021). Near real time flood inundation mapping using social media data as an information source: a case study of 2015 Chennai flood. Geoenvironmental Disasters, 8, 25. https://doi.org/10.1186/s40677-021-00195-x

Kramar, U., & Sternad, M. (2025). Integrating Participatory Approaches and Fuzzy Analytic Hierarchy Process (FAHP) for Barrier Analysis and Ranking in Urban Mobility Planning. Sustainability, 17(4), 1558. https://doi.org/10.3390/su17041558

Lespez, L., Germaine, M.A., Gob, F., Tales, E., Thommeret, N., de Milleville, L., Archaimbault, V., & Letourneur, M. (2025). A new tool to characterise the socio-environmental dimensions of urban rivers: Urban river socio-environmental index. Landscape and Urban Planning, 261, 105388. https://doi.org/10.1016/j.landurbplan.2025.105388

Mokhtari, E., Mezali, F., Abdelkebir, B., & Engel, B. (2023). Flood risk assessment using analytical hierarchy process: A case study from the Cheliff-Ghrib watershed, Algeria. Journal of Water and Climate Change, 14(3), 694–711. https://doi.org/10.2166/wcc.2023.316

Mulu, A., Kassa, S.B., Wossene, M.L., Adefris, S., & Meshesha, T.M. (2025). Identification of flood vulnerability areas using analytical hierarchy process techniques in the Wuseta Watershed, Upper Blue Nile Basin, Ethiopia. Scientific Reports, 15, 28680. https://www.nature.com/articles/s41598-025-13822-6

Nugraha, N.B., Puspaningrum, A., & Santosa, Y.M. (2025). Using AHP to prioritize flood mitigation measures in urban areas. E3S Web of Conferences, 605, 03001. https://doi.org/10.1051/e3sconf/202560503001

Rahman, B., Akmal, M., Muzaffarsyah, T., & Yunanda, R. (2024). Community participation in flood management systems in Aceh Utara Regency. Journal of Ecohumanism, 3(7), 1832–1851. https://doi.org/10.62754/joe.v3i7.4332

Saad, M.S.H., Ali, M.I., Razi, P.Z., Ramli, N.I., & Bawono, A.S. (2024). Integrated approach to flood risk management: A comprehensive thematic review in the Malaysia Context. International Journal of Engineering Technology and Natural Sciences, 6(1), 1–10. https://doi.org/10.46923/ijets.v6i1.337

Saaty, T.L. (1990) How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9-26. http://dx.doi.org/10.1016/0377-2217(90)90057-I

Saaty, T.L, & Vargas, L.G. (2001). Models, Methods, Concepts Sc Applications of the Analytic Hierarchy Process. Springer Science+Business Media, LLC. https://doi.org/http://dx.doi.org/10.1007/978-1-4615-1665-1

Samiri, M., Nilwana, A., Nonci, N., Ahmad, J., & Fitriani, F. (2024). Keterlibatan dan partisipasi masyarakat dalam mitigasi bencana banjir: Studi kasus Kabupaten Sidenreng Rappang, Indonesia. Society, 12(1), 129–139. https://doi.org/10.33019/society.v12i1.472

Slinger, J.H., Cunningham, S.C., & Kothuis, B.L.M. (2023). A co-design method for including stakeholder perspectives in nature-based flood risk management. Natural Hazards, 119(3), 1171–1191. https://doi.org/10.1007/s11069-023-06139-y

Szabo, Z.K., Szádoczki, Z., Bozóki, S., Stanciulescu, G.C., & Szabo, D. (2021). An analytic hierarchy process approach for priori-tisation of strategic objectives of sustainable development. Sustainability, 13(4), 2254. https://doi.org/10.3390/su13042254

Torres-García, L.M., Valdés-Pizzini, M., Valdés-Calderón, K., Frank-Gilchrist, D., Kotowicz, D.M., Maldonado-González, E., & Vargas-Babilonia, P. (2025). Participatory engagement to reduce communication gaps. Natural Hazards, 121(6), 6367–6390. https://doi.org/10.1007/s11069-024-06860-2

Vargas, F.A., Nava, L.F., Reyes, E.G., Olea-Olea, S., Serna, C.R., Solís, S.S., & Meza-Rodríguez, D. (2023). Water and environmental resources: A multi-criteria assessment of management approaches. Water, 15(16), 2991. https://doi.org/10.3390/w15162991

Downloads

Published

2025-12-09

How to Cite

Nurbaskoro, G., Indarto, Novita, E., & Sujarwo, M. W. (2025). Flood Mitigation Priority Strategy to Reduce Community Vulnerability in the Downstream Area of the Setail Watershed, Banyuwangi. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(6), 2216–2228. https://doi.org/10.23960/jtepl.v14i6.2216-2228