Mathematical Modeling for Climate-Based Optimization of Rice Planting Schedules

Authors

DOI:

https://doi.org/10.23960/jtepl.v14i6.2285-2296
Abstract View: 33

Keywords:

ARIMA, Climate change, Linear regression, Optimal planting schedule, Rice production

Abstract

The stability of rice production is greatly influenced by the dynamics of climate variability that changes rapidly and is unpredictable. This study developed a climate-based planting scheduling model that utilizes daily climate data and annual production data for the period 2016–2024. The predictive model was built through multiple linear regression to examine the effects of temperature, rainfall, humidity, and wind speed on crop yields and ARIMA to project climate and rice production until 2029. Data were obtained from BMKG, BPS, and related regional agencies, then processed to produce an adaptive planting schedule. The regression results showed high accuracy with R² = 0.99, Adjusted R² = 0.961, MAE = 5.980, and RMSE = 6.770. Rainfall showed a negative effect (p = 0.025) on rice production. The optimization model produced the two most profitable planting months each year and provided more stable yields than conventional planting patterns. Five-year production projections show fluctuations influenced by climate conditions, including a sharp decline in 2027 and a rebound in 2029. The development of an adaptive schedule model allows for alternative decision-making in areas vulnerable to climate change.

Downloads

Download data is not yet available.

Author Biographies

Moh Yusuf Dawud, Universitas Bojonegoro

Agribusiness Study Program, Faculty of Agriculture

Masahid, Universitas Bojonegoro

Agribusiness Study Program, Faculty of Agriculture

Eko Wahyu Abryandoko, Universitas Bojonegoro

Industrial Engineering, Faculty of Science and Engineering

References

Chen, Q., Zhang, J., & Zhang, L. (2015). Risk assessment, partition and economic loss estimation of rice production in China. Sustainability, 7(1), 563–583. https://doi.org/10.3390/su7010563

Dhaene, J., Kukush, A., Linders, D., & Tang, Q. (2012). Remarks on quantiles and distortion risk measures. European Actuarial Journal, 2(2), 319–328. https://doi.org/10.1007/s13385-012-0058-0

Ensafi, Y., Amin, S.H., Zhang, G., & Shah, B. (2022). Time-series forecasting of seasonal items sales using machine learning – A comparative analysis. International Journal of Information Management Data Insights, 2(1), 100058. https://doi.org/10.1016/j.jjimei.2022.100058

Ghoshal, P., & Goswami, B. (2017). Cobb-douglas production function for measuring efficiency in Indian Agriculture: A region-wise analysis. Economic Affairs, 62(4), 573. https://doi.org/10.5958/0976-4666.2017.00069.9

Herliana, S., Ratnaningtyas, S., Aina, Q., Zuraida, U., Sutardi, A., & Qorina, S. (2025). Comparison between food security in Indonesia and Thailand: Rice export and import. Journal of the Community Development in Asia, 8(1), 97–115. https://doi.org/10.32535/jcda.v8i1.3666

IRRI. (2014). Standard Evaluation System for Rice. (5th ed.). International Rice Research Institute, Los Baños.

Islam, T., Mazumder, T., Roni, M.N.S., & Nur, M.S. (2024). A comparative study of machine learning models for predicting Aman rice yields in Bangladesh. Heliyon, 10(23), e40764. https://doi.org/10.1016/j.heliyon.2024.e40764

Joseph, M., Moonsammy, S., Davis, H., Warner, D., Adams, A., & Oyedotun, T.D.T. (2023). Modelling climate variabilities and global rice production: A panel regression and time series analysis. Heliyon, 9(4), e15480. https://doi.org/10.1016/j.heliyon.2023.e15480

Joshi, R., Sahoo, K.K., Singh, A.K., Anwar, K., Pundir, P., Gautam, R.K., Krishnamurthy, S.L., Sopory, S.K., Pareek, A., & Singla-Pareek, S.L. (2020). Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. Journal of Experimental Botany, 71(2), 653–668. https://doi.org/10.1093/jxb/erz462

Joshi, R., Singh, B., & Shukla, A. (2018). Evaluation of elite rice genotypes for physiological and yield attributes under aerobic and irrigated conditions in tarai areas of western Himalayan region. Current Plant Biology, 13, 45–52. https://doi.org/10.1016/j.cpb.2018.05.001

Kaur, J., Parmar, K.S., & Singh, S. (2023). Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research, 30(8), 19617–19641. https://doi.org/10.1007/s11356-023-25148-9

Langsdorf, S., Löschke, S., Möller, V., Okem, A., Officer, S., Rama, B., Belling, D., Dieck, W., Götze, S., Kersher, T., Mangele, P., Maus, B., Mühle, A., Nabiyeva, K., Nicolai, M., Niebuhr, A., Petzold, J., Prentzler, E., Savolainen, J., … Weyer, N. (2022). Technical Summary Frequently Asked Questions Part of the Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. www.environmentalgraphiti.org

Marvi, M.T., & Linders, D. (2021). Decomposition of natural catastrophe risks: Insurability using parametric cat bonds. Risks, 9(12), 215. https://doi.org/10.3390/risks9120215

Mol, J.M., Botzen, W.J.W., & Blasch, J.E. (2020). Risk reduction in compulsory disaster insurance: Experimental evidence on moral hazard and financial incentives. Journal of Behavioral and Experimental Economics, 84, 101500. https://doi.org/10.1016/j.socec.2019.101500

Norddin, N.I., Mohd Ali, M.R., Fadhilah, N.H., Atikah, N., Shahida, A., & Nohd Noh, N.H. (2019). Multiple linear regression model of rice production using conjugate gradient methods. MATEMATIKA, 35(2), 229–236. https://doi.org/10.11113/matematika.v35.n2.1180

Qin, H., Xiao, M., Li, Y., & Huang, R. (2024). Ethylene modulates rice root plasticity under abiotic stresses. Plants, 13(3), 432. https://doi.org/10.3390/plants13030432

Ran, Y., Chen, H., Ruan, D., Liu, H., Wang, S., Tang, X., & Wu, W. (2018). Identification of factors affecting rice yield gap in southwest China: An experimental study. PLoS ONE, 13(11). https://doi.org/10.1371/journal.pone.0206479

Riaman, Sukono, Supian, S., & Ismail, N. (2022). Mathematical modeling for estimating the risk of rice farmers’ losses due to weather changes. Computation, 10(8), 140. https://doi.org/10.3390/computation10080140

Rozi, F., Santoso, A.B., Mahendri, I G.A.P., Hutapea, R.T.P., Wamaer, D., Siagian, V., Elisabeth, D.A.A., Sugiono, S., Handoko, H., Subagio, H., & Syam, A. (2023). Indonesian market demand patterns for food commodity sources of carbohydrates in facing the global food crisis. Heliyon, 9(6), e16809. https://doi.org/10.1016/j.heliyon.2023.e16809

Salam, M., Rukka, R.M., Samma, M.A.N.K., Tenriawaru, A.N., Rahmadanih, Muslim, A.I., Ali, H.N.B., & Ridwan, M. (2024). The causal-effect model of input factor allocation on maize production: Using binary logistic regression in search for ways to be more productive. Journal of Agriculture and Food Research, 16, 101094. https://doi.org/10.1016/j.jafr.2024.101094

Sheehy, J.E., Mitchell, P.L., & Ferrer, A.B. (2006). Decline in rice grain yields with temperature: Models and correlations can give different estimates. Field Crops Research, 98(2–3), 151–156. https://doi.org/10.1016/j.fcr.2006.01.001

Tran, P.T., Vu, B.T., Ngo, S.T., Tran, V.D., & Ho, T.D.N. (2022). Climate change and livelihood vulnerability of the rice farmers in the North Central Region of Vietnam: A case study in Nghe An province, Vietnam. Environmental Challenges, 7, 100460. https://doi.org/10.1016/j.envc.2022.100460

Wang, X., Kang, Y., Hyndman, R.J., & Li, F. (2023). Distributed ARIMA models for ultra-long time series. International Journal of Forecasting, 39(3), 1163–1184. https://doi.org/10.1016/j.ijforecast.2022.05.001

Wang, Y., Wang, L., Zhou, J., Hu, S., Chen, H., Xiang, J., Zhang, Y., Zeng, Y., Shi, Q., Zhu, D., & Zhang, Y. (2019). Research progress on heat stress of rice at flowering stage. Rice Science, 26(1), 1–10. https://doi.org/10.1016/j.rsci.2018.06.009

Yulianis, N., Sarastuti, Risfaheri, & Rachman, B. (2021). The implementation and synergy of Indonesian national food reserves. IOP Conference Series: Earth and Environmental Science, 892, 012054. https://doi.org/10.1088/1755-1315/892/1/012054

Downloads

Published

2025-12-11

How to Cite

Dawud, M. Y., Masahid, & Abryandoko, E. W. (2025). Mathematical Modeling for Climate-Based Optimization of Rice Planting Schedules. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(6), 2285–2296. https://doi.org/10.23960/jtepl.v14i6.2285-2296