The Role of Fan Speed and Misting for Computational Fluid Dynamics (CFD) Analysis of Temperature and Humidity Regulation in Greenhouses
DOI:
https://doi.org/10.23960/jtepl.v14i6.2026-2038
Abstract View: 51
Keywords:
Computational Fluid Dynamics (CFD), Greenhouse, Misting, Relative Humidity, TemperatureAbstract
Maintaining an optimal climate is essential for plant growth, and greenhouses though controlled often face challenges such as excessive heat. To address this, fan and misting systems are commonly used. This study investigates the role of fan speed and misting in regulating temperature and relative humidity (RH) in a smart greenhouse using Computational Fluid Dynamics (CFD) simulations. In this research, CFD simulations were performed using actual temperature and RH measurements as input data. The scenarios included varying fan speeds (3.4 m/s, 4.5 m/s) and a control condition without a fan, combined with 15-minute misting sessions. The results show that a fan speed of 4.5 m/s with misting is more effective at lowering temperature compared to 3.4 m/s under the same misting conditions. The simulation errors were below 10% across all treatments, indicating the model’s reliability. These findings offer valuable insights for optimizing climate control in greenhouses, supporting more efficient and sustainable crop production.
Downloads
References
Alahudin, M. (2013). Kondisi termal bangunan greenhouse dan screenhouse pada Fakultas Pertanian Universitas Musamus Merauke. MUSTEK ANIM HA, 2(1), 16–27.
Alawadhi, E.M. (2009). Finite Element Simulations Using ANSYS (1st ed.). CRC Press. https://doi.org/10.1201/9781439801611
Anwar, C., & Panggabean, S. (2019). Kajian distribusi suhu dan aliran udara pada alat pengering chips temulawak tipe rak menggunakan simulasi computational fluid dynamics (CFD). Keteknikan Pertanian: Jurnal Rekayasa Pangan dan Pertanian, 7(4), 291-298.
Bartzanas, T., Kacira, M., Zhu, H., Karmakar, S., Tamimi, E., Katsoulas, N., Lee, I. B., & Kittas, C. (2013). Computational fluid dynamics applications to improve crop production systems. Computers and Electronics in Agriculture, 93, 151–167. https://doi.org/10.1016/j.compag.2012.05.012
Bonde, G.M., Ludong, D.P.M., & Najoan, M.E.I. (2021). Smart agricultural system in greenhouse based on Internet of Things for lettuce (Lactuca sativa L.). Jurnal Teknik Elektro dan Komputer, 10(1). https://doi.org/10.35793/jtek.v10i1.31982
Bournet, P.-E., & Rojano, F. (2022). Advances of computational fluid dynamics (CFD) applications in agricultural building modelling: Research, applications and challenges. Computers and Electronics in Agriculture, 201, 107277. https://doi.org/10.1016/j.compag.2022.107277
Chapman, Z., & Doom, J. (2021). Computational fluid dynamic simulation of a pulse-width modulated spray nozzle. Journal of Agricultural Engineering, 52(1), 1104.
Chen, J., Xu, F., Tan, D., Shen, Z., Zhang, L., & Ai, Q. (2015). A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Applied Energy, 141, 106–118. https://doi.org/10.1016/j.apenergy.2014.12.026
Fahmi, M.N., Yohana, E., & Sugiyanto, S. (n.d.). Simulasi distribusi suhu dan kelembapan relatif pada rumah tanaman (green house) dengan sistem humidifikasi. Jurnal Teknik Mesin, 2(1), 41–48.
Fu, Q., Li, X., Zhang, G., & Li, X. (2022). A temperature and vent opening couple model in solar greenhouses for vegetable cultivation based on dynamic solar heat load using computational fluid dynamics simulations. Journal of Food Process Engineering, 46(2), e14240. https://doi.org/10.1111/jfpe.14240
He, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J., & Shu, S. (2018). Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149, 16–25. https://doi.org/10.1016/j.compag.2017.10.001
Jalaluddin, J., Akmal, S., ZA, N., & Ishak, I. (2019). Analisa profil aliran fluida cair dan pressure drop pada pipa L menggunakan metode simulasi computational fluid dynamic (CFD). Jurnal Teknologi Kimia Unimal, 8(1), 97-108. https://doi.org/10.29103/jtku.v8i1.3396
Malekjani, N., & Jafari, S.M. (2018). Simulation of food drying processes by computational fluid dynamics (CFD); recent advances and approaches. Trends in Food Science & Technology, 78, 206–223. https://doi.org/10.1016/j.tifs.2018.06.006
Putro, B., Yohana, E., & Yunianto, B. (2015). Analisis CFD distribusi temperatur dan kelembaban relatif pada proses dehumidifikasi sample house dengan konsentrasi liquid dessicant 30%. Jurnal Teknik Mesin, 3(2), 181–187.
Romdhonah, Y., Suhardiyanto, H., Erizal, E., Krido, S., & Saptomo, S. (2014). Air temperature and RH distribution in standard peak type greenhouse using computational fluid dynamics. Jurnal Ilmu Pertanian dan Perikanan, 3(2), 125–133.
Rumanto, I., Sunaryo, & Irfan, A. (2021). Computational Fluid Dynamic (CFD) analysis of heat distribution in aluminum melting furnace. Device, 11(1), 34–39. https://doi.org/10.32699/device.v11i1.1785
Servina, Y. (2019). Dampak perubahan iklim dan strategi adaptasi tanaman buah dan sayuran di daerah tropis. Jurnal Litbang Pertanian, 38(2), 65–76.
Szpicer, A., Bińkowska, W., Wojtasik-Kalinowska, I., Salih, S.M., & Półtorak, A. (2023). Application of computational fluid dynamics simulations in food industry. European Food Research and Technology, 249, 1411–1430. https://doi.org/10.1007/s00217-023-04231-y
Tando, E. (2019). Review: Pemanfaatan teknologi greenhouse dan hidroponik sebagai solusi menghadapi perubahan iklim dalam budidaya tanaman hortikultura. Buana Sains, 19(1), 91. https://doi.org/10.33366/bs.v19i1.1530
Ukiwe, E. K., Adeshina, S. A., & Tsado, J. (2023). Techniques of infrared thermography for condition monitoring of electrical power equipment. Journal of Electrical Systems and Information Technology, 10, Article 49. https://doi.org/10.1186/s43067-023-00115-z
Versteeg, H.K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd ed.). Pearson Education, Essex, England.
Villagrán, E.A., Baeza Romero, E.J., & Bojacá, C.R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288–304. https://doi.org/10.1016/j.biosystemseng.2019.10.026
Yudhatama, I.W., Hidayat, M.I.P., & Jatimurti, W. (2018). Computational fluid dynamics (CFD) simulation of sand particle erosion in turbulent gas fluid flow in vertical-horizontal elbow. Jurnal Teknik ITS, 7(2).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Renny Eka Putri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung

JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


