The Role of Fan Speed and Misting for Computational Fluid Dynamics (CFD) Analysis of Temperature and Humidity Regulation in Greenhouses

Authors

  • Renny Eka Putri Universitas Andalas
  • Mutiara Salwa Universitas Andalas
  • Ashadi Hasan Universitas Andalas
  • Irriwad Putri Universitas Andalas

DOI:

https://doi.org/10.23960/jtepl.v14i6.2026-2038
Abstract View: 51

Keywords:

Computational Fluid Dynamics (CFD), Greenhouse, Misting, Relative Humidity, Temperature

Abstract

Maintaining an optimal climate is essential for plant growth, and greenhouses though controlled often face challenges such as excessive heat. To address this, fan and misting systems are commonly used. This study investigates the role of fan speed and misting in regulating temperature and relative humidity (RH) in a smart greenhouse using Computational Fluid Dynamics (CFD) simulations. In this research, CFD simulations were performed using actual temperature and RH measurements as input data. The scenarios included varying fan speeds (3.4 m/s, 4.5 m/s) and a control condition without a fan, combined with 15-minute misting sessions. The results show that a fan speed of 4.5 m/s with misting is more effective at lowering temperature compared to 3.4 m/s under the same misting conditions. The simulation errors were below 10% across all treatments, indicating the model’s reliability. These findings offer valuable insights for optimizing climate control in greenhouses, supporting more efficient and sustainable crop production.

Downloads

Download data is not yet available.

Author Biographies

Renny Eka Putri, Universitas Andalas

Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology

Mutiara Salwa, Universitas Andalas

Alumni Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology

Ashadi Hasan, Universitas Andalas

Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology

Irriwad Putri, Universitas Andalas

Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology

References

Alahudin, M. (2013). Kondisi termal bangunan greenhouse dan screenhouse pada Fakultas Pertanian Universitas Musamus Merauke. MUSTEK ANIM HA, 2(1), 16–27.

Alawadhi, E.M. (2009). Finite Element Simulations Using ANSYS (1st ed.). CRC Press. https://doi.org/10.1201/9781439801611

Anwar, C., & Panggabean, S. (2019). Kajian distribusi suhu dan aliran udara pada alat pengering chips temulawak tipe rak menggunakan simulasi computational fluid dynamics (CFD). Keteknikan Pertanian: Jurnal Rekayasa Pangan dan Pertanian, 7(4), 291-298.

Bartzanas, T., Kacira, M., Zhu, H., Karmakar, S., Tamimi, E., Katsoulas, N., Lee, I. B., & Kittas, C. (2013). Computational fluid dynamics applications to improve crop production systems. Computers and Electronics in Agriculture, 93, 151–167. https://doi.org/10.1016/j.compag.2012.05.012

Bonde, G.M., Ludong, D.P.M., & Najoan, M.E.I. (2021). Smart agricultural system in greenhouse based on Internet of Things for lettuce (Lactuca sativa L.). Jurnal Teknik Elektro dan Komputer, 10(1). https://doi.org/10.35793/jtek.v10i1.31982

Bournet, P.-E., & Rojano, F. (2022). Advances of computational fluid dynamics (CFD) applications in agricultural building modelling: Research, applications and challenges. Computers and Electronics in Agriculture, 201, 107277. https://doi.org/10.1016/j.compag.2022.107277

Chapman, Z., & Doom, J. (2021). Computational fluid dynamic simulation of a pulse-width modulated spray nozzle. Journal of Agricultural Engineering, 52(1), 1104.

Chen, J., Xu, F., Tan, D., Shen, Z., Zhang, L., & Ai, Q. (2015). A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Applied Energy, 141, 106–118. https://doi.org/10.1016/j.apenergy.2014.12.026

Fahmi, M.N., Yohana, E., & Sugiyanto, S. (n.d.). Simulasi distribusi suhu dan kelembapan relatif pada rumah tanaman (green house) dengan sistem humidifikasi. Jurnal Teknik Mesin, 2(1), 41–48.

Fu, Q., Li, X., Zhang, G., & Li, X. (2022). A temperature and vent opening couple model in solar greenhouses for vegetable cultivation based on dynamic solar heat load using computational fluid dynamics simulations. Journal of Food Process Engineering, 46(2), e14240. https://doi.org/10.1111/jfpe.14240

He, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J., & Shu, S. (2018). Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149, 16–25. https://doi.org/10.1016/j.compag.2017.10.001

Jalaluddin, J., Akmal, S., ZA, N., & Ishak, I. (2019). Analisa profil aliran fluida cair dan pressure drop pada pipa L menggunakan metode simulasi computational fluid dynamic (CFD). Jurnal Teknologi Kimia Unimal, 8(1), 97-108. https://doi.org/10.29103/jtku.v8i1.3396

Malekjani, N., & Jafari, S.M. (2018). Simulation of food drying processes by computational fluid dynamics (CFD); recent advances and approaches. Trends in Food Science & Technology, 78, 206–223. https://doi.org/10.1016/j.tifs.2018.06.006

Putro, B., Yohana, E., & Yunianto, B. (2015). Analisis CFD distribusi temperatur dan kelembaban relatif pada proses dehumidifikasi sample house dengan konsentrasi liquid dessicant 30%. Jurnal Teknik Mesin, 3(2), 181–187.

Romdhonah, Y., Suhardiyanto, H., Erizal, E., Krido, S., & Saptomo, S. (2014). Air temperature and RH distribution in standard peak type greenhouse using computational fluid dynamics. Jurnal Ilmu Pertanian dan Perikanan, 3(2), 125–133.

Rumanto, I., Sunaryo, & Irfan, A. (2021). Computational Fluid Dynamic (CFD) analysis of heat distribution in aluminum melting furnace. Device, 11(1), 34–39. https://doi.org/10.32699/device.v11i1.1785

Servina, Y. (2019). Dampak perubahan iklim dan strategi adaptasi tanaman buah dan sayuran di daerah tropis. Jurnal Litbang Pertanian, 38(2), 65–76.

Szpicer, A., Bińkowska, W., Wojtasik-Kalinowska, I., Salih, S.M., & Półtorak, A. (2023). Application of computational fluid dynamics simulations in food industry. European Food Research and Technology, 249, 1411–1430. https://doi.org/10.1007/s00217-023-04231-y

Tando, E. (2019). Review: Pemanfaatan teknologi greenhouse dan hidroponik sebagai solusi menghadapi perubahan iklim dalam budidaya tanaman hortikultura. Buana Sains, 19(1), 91. https://doi.org/10.33366/bs.v19i1.1530

Ukiwe, E. K., Adeshina, S. A., & Tsado, J. (2023). Techniques of infrared thermography for condition monitoring of electrical power equipment. Journal of Electrical Systems and Information Technology, 10, Article 49. https://doi.org/10.1186/s43067-023-00115-z

Versteeg, H.K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd ed.). Pearson Education, Essex, England.

Villagrán, E.A., Baeza Romero, E.J., & Bojacá, C.R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288–304. https://doi.org/10.1016/j.biosystemseng.2019.10.026

Yudhatama, I.W., Hidayat, M.I.P., & Jatimurti, W. (2018). Computational fluid dynamics (CFD) simulation of sand particle erosion in turbulent gas fluid flow in vertical-horizontal elbow. Jurnal Teknik ITS, 7(2).

Downloads

Published

2025-12-04

How to Cite

Putri, R. E., Salwa, M., Hasan, A., & Putri, I. (2025). The Role of Fan Speed and Misting for Computational Fluid Dynamics (CFD) Analysis of Temperature and Humidity Regulation in Greenhouses. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(6), 2026–2038. https://doi.org/10.23960/jtepl.v14i6.2026-2038