Environmental Factors and Mulching Effects on Soil Nitrogen in Organic Curly Chili (Capsicum annuum L.) Cultivation for Sustainable Agriculture

Authors

DOI:

https://doi.org/10.23960/jtepl.v14i5.1829-1842
Abstract View: 243

Keywords:

Curly chil, Environmental factors, Mulch, Organic fertilizer, Soil nitrogen

Abstract

Nitrogen availability is a critical determinant of chili yield, and its dynamics are influenced by environmental conditions and cultivation practices such as mulching. This study aimed to evaluate the combined effects of environmental factors and mulching on soil nitrogen levels in curly chili (Capsicum annuum L.) cultivation using organic fertilizer under a sustainable agriculture framework. The experiment used a randomized block design with 24 plots and three treatments: no mulch (P1M0), organic mulch with bamboo leaves (P1M1), and inorganic mulch with plastic (P1M2). Monitoring was conducted for 4 months on soil pH, volumetric water content (VWC), electrical conductivity (EC), temperature, rainfall, solar radiation, humidity, and wind speed. Results showed that soil nitrogen was highest in no mulch (31.1 mg/kg), followed by organic mulch (28.8 mg/kg), and lowest in inorganic mulch (25.6 mg/kg). ANOVA confirmed that organic mulch was comparable to no mulch, but significantly better in maintaining nitrogen than inorganic mulch. Regression analysis identified electrical conductivity as the strongest positive predictor across all treatments, while soil pH showed negative effects and average temperature tended to reduce nitrogen under no mulch conditions. Model accuracy was strong (R²: P1M0 = 0.799, P1M1 = 0.799, P1M2 = 0.699). The use of bamboo leaves can be an alternative in maintaining soil nitrogen availability. Mulching practices adapted to environmental conditions can enhance soil fertility and support sustainable chili production.

Downloads

Download data is not yet available.

Author Biographies

Indah Retno Wulan, Department of Agricultural and Biosystem Engineering, Universitas Gajah Mada

Master’s student in Agricultural and Biosystem Engineering at Universitas Gadjah Mada, focusing on sustainable agriculture, soil fertility, and environmental monitoring.

Bayu Dwi Apri Nugroho, Department of Agricultural and Biosystem Engineering, Universitas Gajah Mada

Lecturer and Researcher, Department of Agricultural and Biosystem Engineering, Universitas Gadjah Mada. Specializes in sustainable agriculture, soil management, and agrometeorology.

Chandra Setyawan, Department of Agricultural and Biosystem Engineering, Universitas Gajah Mada

Lecturer and Researcher, Department of Agricultural and Biosystem Engineering, Universitas Gadjah Mada. Specializes in sustainable agriculture, soil management, and agrometeorology.

Jeane Claudea Tanjung, Department of Agricultural and Biosystem Engineering, Universitas Gajah Mada

Master’s student in Agricultural and Biosystem Engineering at Universitas Gadjah Mada, focusing on sustainable agriculture, soil fertility, and environmental monitoring.

Aristya Ardhitama, BMKG – Climatology Station of Yogyakarta, Jl. Kabupaten Km. 5.5 Duwet, Sendangdadi, Mlati, Sleman, Yogyakarta, Indonesia

employee at BMKG – Climatology Station of Yogyakarta, focusing on agrometeorology, climate analysis, and sustainable agriculture.

References

Adak, S. (2025). Smart agriculture with NPK sensors: A sustainable approach to soil health and fertiliser optimisation in guava farming. Journal of Scientific Research and Reports, 31(7), 45-52. https://doi.org/10.9734/jsrr/2025/v31i73227

Akhtar, K., Wang, W., Djalovic, I., Vara Prasad, P.V., Ren, G., Ain, N.U., Riaz, M., Feng, Y., Yang, G., & Wen, R. (2023). Combining straw mulch with nitrogen fertilizer improves soil and plant physio-chemical attributes, physiology, and yield of maize in the semi-arid region of China. Plants, 12(18), 3308. https://doi.org/10.3390/plants12183308

Aprimonika, D., Vauzia, & Sulastri, E. (2024). Dampak pencahayaan terhadap pertumbuhan bibit salam (Syzygium polyanthum) UPTD BSPTH Dinas Kehutanan Provinsi Sumatera Barat. Prosiding Seminar Nasional Biologi (SEMNASBIO 2024). Universitas Negeri Padang. ISSN: 2809-8447

Changsha Zoko Link Technology Co., Ltd. (n.d.). Soil NPK Sensor RS485 Meter Soil Nutrient Fertility Tester. NiuBoL. Retrieved from https://www.zokolink.com/static/upload/file/20220811/1660226143129775.pdf

Chen, H., Li, X., Hu, F., & Shi, W. (2013). Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Global Change Biology, 19(10), 2956–2964. https://doi.org/10.1111/gcb.12274

Choudhary, M.A., Akramkhanov, A., & Saggar, S. (2002). Nitrous oxide emissions from a New Zealand cropped soil: Tillage effects, spatial and seasonal variability. Agriculture, Ecosystems & Environment, 93(1–3), 33–43. https://doi.org/10.1016/S0167-8809(02)00005-1

Chinembiri, E., Chikoore, R., & Mupini, B. (2025). Machine learning-driven soil health analysis for precision agriculture: Sensor based fertilizer recommendation. International Journal of Computer Science and Mobile Computing (IJCSMC), 14(7), 78-89. https://doi.org/10.47760/ijcsmc.2025.v14i07.008

Cleveland, W.S. (1993). Visualizing Data. Summit, NJ: Hobart Press. ISBN 9780963488404

Davidson, E.A., Verchot, L.V., Cattânio, J.H., Ackerman, I.L., & Carvalho, J.E.M. (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48(1), 53–69. https://doi.org/10.1023/A:1006204113917.

Ding, X., Jiang, Y., Zhao, H., Guo, D., He, L., Liu, F., Zhou, Q., Nandwani, D., Hui, D., & Yu, J. (2018). Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PLOS ONE, 13(8), e0202090. https://doi.org/10.1371/journal.pone.0202090.

Farnsworth, D.L. (2025). Fixed points in linear regression. Open Journal of Statistics, 15(3), 251-271. https://doi.org/10.4236/ojs. 2025.153013

Ghozali, I. (2018). Aplikasi Analisis Multivariate dengan Program IBM SPSS 25. Badan Penerbit Universitas Diponegoro, Semarang.

Haynes, R.J., Cameron, K. C., Goh, K. M., & Sherlock, R. R. (1986). Mineral nitrogen in the plant-soil system (pp. 483). Academic Press. ISBN 978-0-12-333450-6.

Heinen, M., Marcelis, L.F.M., Elings, A., & Figueroa, R. (2002). Effects of EC and fertigation strategy on water and nutrient uptake of tomato plants. Acta Horticulturae, 593, 101-107. https://doi.org/10.17660/ActaHortic.2002.593.12.

Ibarra-Jiménez, L., Lira-Saldivar, R.H., Valdez-Aguilar, L.A., & Lozano-Del Río, J. (2011). Colored plastic mulches affect soil temperature and tuber production of potato. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 61(4), 365–371. https://doi.org/10.1080/09064710.2010.495724

Indonusa Tekno. (2025). RS485 soil NPK PH EC temp humidity sensor tester 7 in 1 soil. Indonusa Tekno. https://indonusatekno.com/p/rs485-soil-npk-ph-ec-temp-humidity-sensor-tester-7-in-1-soil/.

Iqbal, R., Raza, MAS, Valipour, M., Saleem, MF, Zaheer, MS, Ahmad, S., Toleikiene, M., Haider, I., Aslam, MU, & Nazar, MA (2020). Potential agricultural and environmental benefits of mulches—a review. Buletin Pusat Penelitian Nasional, 44(1), 75. https://doi.org/10.1186/s42269-020-00290-3

Joswig, J.S., Wirth, C., Schuman, M.C., Kattge, J., Reu, B., Wright, I.J., Mahecha, M.D. (2022). Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology & Evolution, 6, 36–50. https://doi.org/10.1038/s41559-021-01616-8.

Karamina, H., Fikrinda, W., & Murti, A.T. (2017). Kompleksitas pengaruh temperatur dan kelembaban tanah terhadap nilai pH tanah di perkebunan jambu biji varietas kristal (Psidium guajava L.) Bumiaji, Kota Batu. Jurnal Kultivasi, 16(3), 393–402. https://doi.org/10.24198/kultivasi.v16i3.13225

Kumar, K.A., Jayanthi, J., Singh, R.D., Sahu, S.K., & Hasan, A. (2025). Exploring soil health and sustainability in the Northwestern Himalayas: assessing indicators amidst changing land use. Environmental Earth Sciences, 84(8), 1-17. https://doi.org/10. 1007/s12665-025-12223-2

Laia, I.A., Gulo, E.A.K.D., Gulo, L.L., & Ndraha, A.B. (2025). Dampak penerapan pertanian organik terhadap kualitas tanah dan hasil pertanian tanaman padi sawah di Kepulauan Nias. Flora: Jurnal Kajian Ilmu Pertanian dan Perkebunan, 2(1), 1–12. https://doi.org/10.62951/flora.v2i1.263

Lee, J.G., Cho, S.R., Jeong, S.T., Hwang, H.Y., & Kim, P.J. (2019). Different response of plastic film mulching on greenhouse gas intensity (GHGI) between chemical and organic fertilization in maize upland soil. Science of the Total Environment, 696, 133827. https://doi.org/10.1016/j.scitotenv.2019.133827

Leiwakabessy, F. M., & Sutandi, A. (2003). Pupuk dan Pemupukan. Departemen Ilmu Tanah, Fakultas Pertanian, Institut Pertanian Bogor. ISBN 979-489-537-7.

Li, H., Wang, J., Zhang, J., Liu, T., Acquah, G.E., & Yuan, H. (2022). Combining variable selection and multiple linear regression for soil organic matter and total nitrogen estimation by DRIFT-MIR spectroscopy. Agronomy, 12(3), 638. https://doi.org/10.3390/agronomy12030638

Li, J., Ren, T., Li, Y., Chen, N., Yin, Q., Li,M., Liu, H. (2022). Organic materials with high C/N ratio: more beneficial to soil improvement and soil health. Biotechnology Letters, 44(12), 1415–1429. https://doi.org/10.1007/s10529-022-03309-z

Lubis, N., & Wasito, M. (2022). Analisa unsur hara tanah akibat pemberian ekoenzim pada tanaman bawang merah (Allium ascalonicum L.). Scenario (Seminar of Social Sciences Engineering and Humaniora). Retrieved on 18-09-2025 from https://jurnal.pancabudi.ac.id/index.php/scenario/article/view/4512

McGill, R., Tukey, J.W., & Larsen, W.A. (1978). Variations of box plots. The American Statistician, 32(1), 12–16. https://doi.org/10.1080/00031305.1978.10479236

Meena, A.L., Jha, P., Dotaniya, M.L., Kumar, B., Meena, B.P., & Jat, R.L. (2020). Carbon, nitrogen and phosphorus mineralization as influenced by type of organic residues and soil contact variation in Vertisol of Central India. Agricultural Research, 9(2), 232–240. https://doi.org/10.1007/s40003-019-00425-7

Ministry of Agriculture of the Republic of Indonesia. (2021). Statistics of Chili Production in Indonesia 2020. Jakarta: Ministry of Agriculture of the Republic of Indonesia.

Mirzakhaninafchi, H., Mani, I., Hasan, M., Mirzakhani Nafchi, A., Parrey, R.A., & Kumar, D. (2022). Development of prediction models for soil nitrogen management based on electrical conductivity and moisture content. Sensors, 22(18), 6728. https://doi.org/10.3390/s22186728

Montgomery, D.R. (2007). Dirt: The Erosion of Civilizations. University of California Press.

Montgomery, D.C., Peck, E.A., & Vining, G.G. (2012). Introduction to Linear Regression Analysis (5th ed.). John Wiley & Sons. ISBN 9780470542811

Nadelhoffer, K.J. (1990). Microlysimeter for measuring nitrogen mineralization and microbial respiration in aerobic soil incubations. Soil Science Society of America Journal, 54(2), 411–415. https://doi.org/10.2136/sssaj1990.0361599500540 0020019x

Nengparmoi, T., Monica Devi, N., Naveen, K., & Devi, OR (2023). Organic Farming-Concepts. In Recent Trend in Agriculture Chapter. Intregated Publications, Asam, India: 351-366.

Nugroho, A., Sitepu, S.M.B., & Amrul, H.M.Z. (2020). Efetivitas pemberian ekoenzim dan beberapa jenis media tanam terhadap pertumbuhan bibit kopi Robusta (Coffea canephora). Akselerasi : Jurnal Ilmiah Nasional, 5(3), 97-105. https://doi.org/10.54783/jin.v5i3.810

Prosdocimi, M., Tarolli, P., & Cerdà, A. (2016). Mulching practices for reducing soil water erosion: A review. Earth-Science Reviews, 161, 191–203. https://doi.org/10.1016/j.earscirev.2016.08.006

Purnomo, E., Black, A.S., & Conyers, M.K. (2000). The distribution of net nitrogen mineralisation within surface soil. 2. Factors influencing the distribution of net N mineralisation. Australian Journal of Soil Research, 38(3), 643–652. https://doi.org/10.1071/SR99059

Qin, W., Hu, C., & Oenema, O. (2015). Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Scientific Reports, 5, 16210. https://doi.org/10.1038/srep16210

Rubatzky, V.E., & Yamaguchi, M. (1988). Sayuran Dunia: Prinsip, Produksi dan Gizi (Buku 2; C. Herison, Trans.). ITB Press. https://lib.ui.ac.id/detail?id=11832&lokasi=lokal

Salama, K., & Geyer, M. (2023). Plastic mulch films in agriculture: Their use, environmental problems, recycling and alternatives. Environments, 10(10), 179. https://doi.org/10.3390/environments10100179

Sari, M.A.W., Ivansyah, O., & Nurhasanah, N. (2019). Hubungan konduktivitas listrik tanah dengan unsur hara NPK dan pH pada lahan pertanian gambut. Jurnal Fisika FLUX, 7(2), 158–165. https://doi.org/10.26418/pf.v7i2.33358

Serlina, Y. (2020). Pengaruh faktor meteorologi terhadap konsentrasi NO₂ di udara ambien (Studi kasus Bundaran Hotel Indonesia DKI Jakarta). Jurnal Ilmu Lingkungan, 5(3), 210–220. https://doi.org/10.32672/jse.v5i3.2146.

Setiawan, E. (2009). Kajian hubungan unsur iklim terhadap produktivitas cabe jamu (Piper retrofractum Vahl) di Kabupaten Sumenep. Agrovigor: Jurnal Agroekoteknologi, 2(1). https://doi.org/10.21107/agrovigor.v2i1.234.

Setiawan, R., & Hariyono, D. (2022). Pengaruh beberapa unsur iklim (curah hujan, suhu udara, dan kelembaban udara) terhadap produktivitas tanaman jahe (Zingiber officinale). Protan: Jurnal Ilmu Pertanian Tropika dan Subtropika, 10(12), 659-667. https://doi.org/10.21776/ub.protan.2022.010.12.01

Shandong Renke Control Technology Co., Ltd. (2021). Soil temperature and moisture transmitter type 485 instruction manual V1.0: RS-NPK-N01-TR soil nitrogen, phosphorus, potassium three-in-one fertility sensor (Type 485) user’s guide (Version 1.0), 1–13. https://imiconsystem.com/wp-content/uploads/2021/05/Soil-Nitrogen-Phosphorus-and-Potassium-Three-in-One-Fertility-Sensor-Model-485-1.pdf.

Shcherbak, I., Millar, N., & Robertson, G.P. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N₂O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences, 111(25), 9199–9204. https://doi.org/10.1073/pnas.1322434111

Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., & Rey, A. (2003). Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. European Journal of Soil Science, 54(4), 779–791. https://doi.org/10.1046/j.1351-0754.2003.0567.x

Snyder, C.S., Davidson, E.A., Smith, P., & Venterea, R.T. (2014). Agriculture: Sustainable crop and animal production to help mitigate nitrous oxide emissions. Current Opinion in Environmental Sustainability, 9–10, 46–54. https://doi.org/10.1016/j.cosust.2014.07.005

Jansson, S.L., & Persson, J. (1982). Mineralization and immobilization of soil nitrogen. In Nitrogen in Agricultural Soil. (Stevenson, F.J. (Ed.). American Society of Agronomy: 229-252. https://doi.org/10.2134/agronmonogr22

Sulaeman, Y., Sutanto, E., Kasno, A., Sunandar, N., & Purwaningrahayu, R.D. (2024). Developing and testing a portable soil nutrient detector in irrigated and rainfed paddy soils from Java, Indonesia. Computers, 13(8), 209. https://doi.org/10.3390/computers13080209

Suwandi, S.A., Razie, F., & Hayati, A. (2024). Peranan eco-enzyme terhadap perubahan hara N tanah dan pertumbuhan awal padi pada tanah sawah tadah hujan. Acta Solum, 3(1), 1-8. https://doi.org/10.20527/actasolum.v3i1.2797

Tukey, J.W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, MA. ISBN 9780201076165

Verma, S., & Pradhan, S.S. (2024). Effect of mulches on crop, soil and water productivity: A review. Agricultural Reviews, 45(2), 335–339. https://doi.org/10.18805/ag.R-2243.

Wang, S., Ding, L., Liu, W., Wang, J., & Qian, Y. (2021). Effect of plastic mulching on soil carbon and nitrogen cycling-related bacterial community structure and function in a dryland spring maize field. Agriculture, 11(11), 1040. https://doi.org/10.3390/agriculture11111040.

Wang, X., Fan, J., Xing, Y., Xu, G., Wang, H., Deng, J., Wang, Y., Zhang, F., Li, P., & Li, Z. (2019). Chapter three: The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Advances in Agronomy, 153, 121-173. https://doi.org/10.1016/bs.agron.2018.08.003

Wang, X & Zhanbin, Li & Yingying, Xing. (2015). Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agricultural Water Management, 161, 53-64. https://doi.org/10.1016/j.agwat.2015.07.019.

Yan, X., Chen, X., Ma, C., Cai, Y., Cui, Z., Chen, X., Wu, L., & Zhang, F. (2021). What are the key factors affecting maize yield response to and agronomic efficiency of phosphorus fertilizer in China? Field Crops Research, 270, 108221. https://doi.org/10.1016/j.fcr.2021.108221

Zhang, R., & Wienhold, B. J. (2002). The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH. Nutrient Cycling in Agroecosystems, 62(1), 53-62. https://doi.org/10.1023/A:1021115227884.

Zhao, Y., Mao, X., Li, S., Huang, X., Che, J., & Ma, C. (2023). A review of plastic film mulching on water, heat, nitrogen balance, and crop growth in farmland in China. Agronomy, 13(10), 2515. https://doi.org/10.3390/agronomy13102515

Downloads

Published

2025-10-16

How to Cite

Wulan, I. R., Nugroho, B. D. A., Setyawan, C., Tanjung, J. C., & Ardhitama, A. (2025). Environmental Factors and Mulching Effects on Soil Nitrogen in Organic Curly Chili (Capsicum annuum L.) Cultivation for Sustainable Agriculture. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(5), 1829–1842. https://doi.org/10.23960/jtepl.v14i5.1829-1842