Estimation Model of Robusta Coffee (Coffea canephora) Productivity Based on Soil, Plant, and Remote Sensing Data

Authors

  • Mochtar Fauzi Brawijaya University
  • Nisfi Fariatul Ifadah Brawijaya University
  • Soemarno Soemarno Brawijaya University
  • Kurniawan Sigit Wicaksono Brawijaya University

DOI:

https://doi.org/10.23960/jtepl.v15i1.52-62
Abstract View: 18

Keywords:

Coffee, Crop, NDVI, Production estimation, Soil

Abstract

Coffee is an important global commodity, and understanding the relationships among factors influencing its productivity is essential for improving production efficiency. This study aimed to evaluate the effects of soil, plant, and remote sensing variables on Robusta coffee productivity. The production estimation model included soil variables (potassium, pH, and electrical conductivity), crop variables (plant height, crown diameter, and chlorophyll content), and remote sensing data (NDVI). Data were collected directly from field plots measuring 10 m × 10 m. Multiple linear regression models were developed to improve prediction performance. Model accuracy was evaluated using paired t-tests, RMSE, and RRMSE. The results showed that the model based on soil and crop data (R² = 0.85) performed slightly better than the model based on soil, plant, and NDVI data (R² = 0.88). Furthermore, the soil and crop data-based model produced lower error values (RMSE = 2659.44; RRMSE = 11%) than the model incorporating NDVI (RMSE = 2737.10; RRMSE = 12%). These findings indicate that soil and plant variables play a dominant role in predicting coffee productivity, while remote sensing data provide complementary information. This study provides a comprehensive understanding of the integrated influence of soil, plant, and remote sensing variables in estimating and improving Robusta coffee productivity.

Downloads

Download data is not yet available.

Author Biographies

Mochtar Fauzi, Brawijaya University

Soil and Water Management Postgraduate Program, Faculty of Agriculture

Nisfi Fariatul Ifadah, Brawijaya University

Department of Soil, Faculty of Agriculture

Soemarno Soemarno, Brawijaya University

Department of Soil, Faculty of Agriculture

Kurniawan Sigit Wicaksono, Brawijaya University

Department of Soil, Faculty of Agriculture

References

AbdelRahman, M.A.E. (2023). An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rendiconti Lincei, 34(3), 767–808. https://doi.org/10.1007/s12210-023-01155-3

Aziz, M.H., & Santosa, S.H.M.B. (2019). Pemanfaatan citra Sentinel-2A untuk estimasi produksi tanaman kopi di sebagian wilayah Kabupaten Temanggung. Jurnal Bumi Indonesia, 8(3), 1–8.

Badan Pusat Statistik [BPS]. (2023). Statistik Kopi Indonesia 2022 (Sub Direktorat Statistik Tanaman Perkebunan, Ed.; Vol. 7). Central Statistics Agency of Indonesia.

Chowdhury, M.Z.I., & Turin, T.C. (2020). Variable selection strategies and its importance in clinical prediction modelling. Family Medicine and Community Health, 8(1), 1–7. https://doi.org/10.1136/fmch-2019-000262

Despotovic, M., Nedic, V., Despotovic, D., & Cvetanovic, S. (2016). Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 56, 246–260. https://doi.org/10.1016/j.rser.2015.11.058

Elephant, D.E., Miles, N., & Muchaonyerwa, P. (2023). Effect of potassium application rates on sugarcane yield in soils with different non-exchangeable potassium reserves and fixation capacity. Agronomy, 13(8), 1–12. https://doi.org/10.3390/agronomy13081969

Freitas, V.V., Borges, L.L.R., Vidigal, M.C.T.R., dos Santos, M.H., & Stringheta, P.C. (2024). Coffee: A comprehensive overview of origin, market, and the quality process. Trends in Food Science and Technology, 146, 104411. https://doi.org/10.1016/j.tifs.2024.104411

Hasanuzzaman, M., Bhuyan, M.H.M.B., Nahar, K., Hossain, M.S., Al Mahmud, J., Hossen, M.S., Masud, A.A.C., Moumita, & Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8(3), 31. https://doi.org/10.3390/agronomy8030031

Hifnalisa, H., Jufri, Y., Rizka, F., & Rosmaiti, R. (2024). Improving productivity of arabica coffee genotype G1 through potassium fertilization. IOP Conference Series: Earth and Environmental Science, 1356(1), 012019. https://doi.org/10.1088/1755-1315/1356/1/012019

Hunt, D.A., Tabor, K., Hewson, J.H., Wood, M.A., Reymondin, L., Koenig, K., Schmitt-Harsh, M., & Follett, F. (2020). Review of remote sensing methods to map coffee production systems. Remote Sensing, 12, 2041. https://doi.org/10.3390/rs12122041

Ihuoma, S.O., & Madramootoo, C. A. (2017). Recent advances in crop water stress detection. Computers and Electronics in Agriculture, 141, 267–275. https://doi.org/10.1016/j.compag.2017.07.026

Jamieson, P.D., Porter, J.R., & Wilson, D.R. (1991). A test of the computer simulation model ARCWHEAT 1 on wheat crops grown in New Zealand. Field Crops Research, 27, 337–350. https://doi.org/https://doi.org/10.1016/0378-4290(91)90040-3

Jierula, A., Wang, S., Oh, T.M., & Wang, P. (2021). Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data. Applied Sciences (Switzerland), 11(5), 1–21. https://doi.org/10.3390/app11052314

Johnson, R., Vishwakarma, K., Hossen, M.S., Kumar, V., Shackira, A.M., Puthur, J.T., Abdi, G., Sarraf, M., & Hasanuzzaman, M. (2022). Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry, 172, 56–69. https://doi.org/10.1016/j.plaphy.2022.01.001

Karim, A., Hifnalisa, H., & Manfarizah, M. (2021). Analysis of arabica coffee productivity due to shading, pruning, and coffee pulp-husk organic fertilizers treatments. Coffee Science, 16, 1–8. https://doi.org/10.25186/.v16i.1903

Leroux, L., Baron, C., Zoungrana, B., Traore, S.B., Lo Seen, D., & Begue, A. (2016). Crop monitoring using vegetation and thermal indices for yield estimates: Case study of a rainfed cereal in Semi-Arid West Africa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 347–362. https://doi.org/10.1109/JSTARS.2015.2501343

Luo, S., Jiang, X., Jiao, W., Yang, K., Li, Y., & Fang, S. (2022). Remotely sensed prediction of rice yield at different growth durations using UAV multispectral imagery. Agriculture, 12(9), 1447. https://doi.org/10.3390/agriculture12091447

Muñoz, C.A.U., Hernández-Arredondo, J.D., Montoya-Restrepo, E.C., Medina-Rivera, R.D., Ibarra-Ruales, L.N., Carmona-González, C.Y., & Flórez-Ramos, C.P. (2015). Estimation of leaf area in coffee leaves (Coffea arabica L.) of the castillo® variety. Bragantia, 74(4), 412–416. https://doi.org/10.1590/1678-4499.0026

Netto, A.T., Campostrini, E., De Oliveira, J.G., & Bressan-Smith, R.E. (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104(2), 199–209. https://doi.org/10.1016/j.scienta.2004.08.013

Permanasari, P.N., Wicaksono, K.P., Saitama, A., Kusuma, B.A., & Bamratama, M.R. (2024). Productivity of arabica coffee in Brawijaya University’s Agroforestry. International Journal of Environment, Agriculture and Biotechnology, 9(2), 137–142. https://dx.doi.org/10.22161/ijeab.92.15

Nogueira, S.M.C., Moreira, M.A., & Volpato, M.M.L. (2018). Relationship between coffee crop productivity and vegetation indexes derived from oli / landsat-8 sensor data with and without topographic correction. Engenharia Agricola, 38(3), 387–394. https://doi.org/10.1590/1809-4430-eng.agric.v38n3p387-394/2018

Prasetya, N.R., Putra, A.N., Rayes, M.L., & Utami, S.R. (2025). Enhancing soil total nitrogen prediction in rice fields using advanced Geo-AI integration of remote sensing data and environmental covariates. Smart Agricultural Technology, 10, 1–12. https://doi.org/10.1016/j.atech.2024.100741

Putra, A.N., Kristiawati, W., Mumtazydah, D. C., Anggarwati, T., Annisa, R., Sholikah, D.H., Okiyanto, D., & Sudarto. (2021). Pineapple biomass estimation using unmanned aerial vehicle in various forcing stage: Vegetation index approach from ultra-high-resolution image. Smart Agricultural Technology, 1, 100025. https://doi.org/10.1016/j.atech.2021.100025

Ratner, B. (2010). Variable selection methods in regression: Ignorable problem, outing notable solution. Journal of Targeting, Measurement and Analysis for Marketing, 18(1), 65–75. https://doi.org/10.1057/jt.2009.26

Rouse, R.W.H., Haas, J.A.W., Schell, J.A., & Deering, D.W. (1974). Monitoring vegetation systems in the great plains with ERTS. Third ERTS-1 Symposium NASA, 309–317.

Samoggia, A., & Riedel, B. (2019). Consumers’ perceptions of coffee health benefits and motives for coffee consumption and purchasing. Nutrients, 11(3), 1–21. https://doi.org/10.3390/nu11030653

Sholikah, D.H., Wicaksono, K.S., & Soemarno. (2023). Pendugaan produksi kopi berbasis parameter tanaman dan penginderaan jauh di kebun kopi rakyat Kecamatan Wajak, Kabupaten Malang. AGROMIX, 14(1), 114–124. https://doi.org/10.35891/agx.v14i1.3584

Steyerberg, E.W. (2019). Selection of main effects. In M. Gail, K. Krickeberg, J. Sarnet, A. Tsiatis, & W. Wong (Eds.), Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (2nd ed., pp. 207–225). Springer. https://doi.org/10.1007/978-3-030-16399-0_11

Toor, M.D., Adnan, M., Rehman, F., Tahir, R., Saeed, M., Khan, A., & Pareek, V. (2021). Nutrients and their importance in agriculture crop production: A Review. Indian Journal of Pure & Applied Biosciences, 9(1), 1–6. https://doi.org/10.18782/2582-2845.8527

Tsele, P., Ramoelo, A., & Qabaqaba, M. (2023). Development of the grass LAI and CCC remote sensing-based models and their transferability using sentinel-2 data in heterogeneous grasslands. International Journal of Remote Sensing, 44(8), 2643–2667. https://doi.org/10.1080/01431161.2023.2205982

Willmott, C.J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 79–82. https://doi.org/http://dx.doi.org/10.3354/cr030079

Downloads

Published

2026-02-06

How to Cite

Fauzi, M., Ifadah, N. F., Soemarno, S., & Wicaksono, K. S. (2026). Estimation Model of Robusta Coffee (Coffea canephora) Productivity Based on Soil, Plant, and Remote Sensing Data. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 15(1), 52–62. https://doi.org/10.23960/jtepl.v15i1.52-62