Nondestructive Prediction of Oil Palm Fruit Quality During Processing Delays Using Electrical Impedance Spectroscopy

Authors

  • Arief Al Akbar IPB University
  • I Wayan Budiastra IPB University
  • Irmansyah Irmansyah IPB University

DOI:

https://doi.org/10.23960/jtepl.v14i6.2171-2178
Abstract View: 30

Keywords:

EIS, Nondestructive, PCR, PLS, Oil palm

Abstract

Nondestructive prediction of palm fruit quality is needed to monitor changes in palm fruit quality during processing delays. This study aims to develop a method for predicting the chemical quality of palm fruit during processing delays using the Electrical Impedance Spectroscopy (EIS). The electrical impedance of palm fruit were measured at frequencies of 50 Hz to 1 MHz and followed by the determination of free fatty acid (FFA) and moisture content using chemical methods. The best initial treatment for impedance spectrum data in this study was Standard Normal Variate (SNV) and Baseline. The results of this study indicate that the PLS method outperforms PCR in predicting FFA and moisture content. The best prediction for free fatty acid content was using the SNV pre-treatment and component factor 7 with a value of r = 0.87; SEC = 2.75%; SEP = 2.82%; CV = 23.81%; RPD = 1.94 and consistency of 97.75%. The best prediction for moisture content was obtained using the Baseline initial treatment and component factor 15 with a value of r = 0.97; SEC = 3.65%; SEP = 3.82%; CV = 28.24%; RPD = 1.91 and consistency of 83.24%. The developed electrical impedance and PLS methods can be used to predict free fatty acid content and moisture content of oil palm fruit during processing delays.

Downloads

Download data is not yet available.

Author Biographies

Arief Al Akbar, IPB University

Department of Mechanical and Biosystem Engineering

I Wayan Budiastra, IPB University

1   Department of Mechanical and Biosystem Engineering, IPB University, Bogor, INDONESIA.

2   Center for Research on Engineering Application in Tropical Agriculture, IPB University, Bogor, INDONESIA.

Irmansyah Irmansyah, IPB University

Department of Physics

References

Akbar, A.R.M., Wibowo, A.D., & Santoso, R. (2023). Investigation on the optimal harvesting time of oil palm fruit. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 12(2), 524–532. https://doi.org/10.23960/jtep-l.v12i2.524-532

Aliteh, N.A., Misron, N., Aris, I., Sidek, R.M., Tashiro, K., & Wakiwaka, H. (2018). Triple flat type inductive-based oil palm fruit maturity sensor. Sensors, 18(8), 2496. https://doi.org/10.3390/s18082496

Badan Standardisasi Nasional. (1998). SNI 01-3555-1998: Cara uji minyak dan lemak. https://pesta.bsn.go.id/produk/detail/12-sni01-0013-1987

Basyuni, M., Amri, N., Putri, L.A.P., Syahputra, I., & Arifiyanto, D. (2025). Characteristics of fresh fruit bunch yield and the physicochemical qualities of palm oil during storage in North Sumatra, Indonesia. Indonesian Journal of Chemistry, 17(2), 182–190. https://doi.org/10.22146/ijc.24910

Cen, H., & He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 18(2), 72–83. https://doi.org/10.1016/j.tifs.2006.09.003

Harun, N., Misron, N., Sidek, R.M., Aris, I., Ahmad, D., & Wakiwaka, H. (2013). Investigations on a novel inductive concept frequency technique for the grading of oil palm fresh fruit bunches. Sensors, 13(2), 54–66. https://doi.org/10.3390/s130202254

Hioki Corporation. (2015). LCR Hitester 3532-50, component measuring instrument. https://www.hioki.com

Hudori, M. (2011). Analisa faktor penyebab tingginya kadar kotoran pada produksi minyak kelapa sawit. Jurnal Citra Widya Edukasi, 3(1), 21–27. https://journal.poltekcwe.ac.id/index.php/jurnal_citrawidyaedukasi/article/view/173

Iqbal, Z., Herodian, S., & Widodo, S. (2014). Pendugaan kadar air dan total karoten tandan buah segar (TBS) kelapa sawit menggunakan NIR spektroskopi. Jurnal Keteknikan Pertanian, 2(2), 111–116. http://dx.doi.org/10.19028/jtep.02.2.111-116

Jankovská, R., & Šustová, K. (2003). Analysis of cow milk by near-infrared spectroscopy. Czech Food Science, 21(4), 123–128. http://dx.doi.org/10.17221/3488-CJFS

Juansah, J., Budiastra, I.W., Dahlan, K., & Seminar, K.B. (2014). Electrical properties of Garut citrus fruits at low alternating current signal and its correlation with physicochemical properties during maturation. International Journal of Food Properties, 17(1), 1498–1517. https://doi.org/10.1080/10942912.2012.723233

Kim, Y., Singh, M., & Kays, S.E. (2007). Near-infrared spectroscopic analysis of macronutrients and energy in homogenized meals. Food Chemistry, 105(3), 1248–1255. https://doi.org/10.1016/j.foodchem.2007.03.011

Makky, M., & Soni, P. (2014). In situ quality assessment of intact oil palm fresh fruit bunches using rapid portable non-contact and non-destructive approach. Journal of Food Engineering, 120(1), 248–259. https://doi.org/10.1016/j.jfoodeng.2013.08.011

Mellyana, V., Budiastra, I.W., Irmansyah, & Purwanto, Y.A. (2024). Electrical properties for non-destructive determination of free fatty acid and moisture content in oil palm fruit. International Journal on Advanced Science, Engineering and Information Technology, 14(2), 641–649. http://dx.doi.org/10.18517/ijaseit.14.2.19850

Mellyana, V., Budiastra, I.W., Irmansyah, & Purwanto, Y.A. (2025). Predicting oil content of palm fruit based on its electrical properties. Jurnal Teknik Pertanian Lampung, 14(3), 933–946. http://dx.doi.org/10.23960/jtep-l.v14i3.933-946

Nayantakaningtyas, J.S., & Daryanto, H.K. (2012). Daya saing dan strategi pengembangan minyak sawit di Indonesia. Jurnal Manajemen dan Agribisnis, 9(3), 194–201.

Nicolai, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K.I., & Lamertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(1), 99–118. https://doi.org/10.1016/j.postharvbio.2007.06.024

Pamungkas, W., Darmawan, J., & Nurlaela, I. (2014). Evaluasi keragaman fenotipe dan seleksi ikan patin siam (Pangasianodon hypophthalmus) F-2 berdasarkan karakter pertumbuhan. Media Akuakultur, 9(1), 7–11. http://dx.doi.org/10.15578/ma.9.1.2014.7-11

Paramitha, A., & Ekawati, R. (2022). Analisis karakteristik mutu palm kernel oil (PKO) asal PT. Perkebunan Nusantara IV unit usaha Pabatu. Jurnal Agribios, 20(1), 50–62. http://dx.doi.org/10.36841/agribios.v20i1.1634

Tipler, P.A. (2001). Fisika untuk sains dan teknik (Ed. ke-3, Jilid 2, hlm. 109–117). Erlangga.

Vozáry, E., & Benkő, P. (2010). Non-destructive determination of impedance spectrum of fruit flesh under the skin. Journal of Physics: Conference Series, 224(1), 012142. https://doi.org/10.1088/1742-6596/224/1/012142

Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. Journal of Food Engineering, 82(2), 274–280. https://doi.org/10.1016/j.jfoodeng.2007.12.003

Yulia, M., & Suhandy, D. (2014). Seleksi panjang gelombang yang efisien pada NIR spectroscopy untuk pengukuran kandungan padatan terlarut buah salak pondoh menggunakan model forward interval PLS. Jurnal Ilmiah Teknik Pertanian, 6(3), 143–154.

Downloads

Published

2025-12-08

How to Cite

Akbar, A. A., Budiastra, I. W., & Irmansyah, I. (2025). Nondestructive Prediction of Oil Palm Fruit Quality During Processing Delays Using Electrical Impedance Spectroscopy. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(6), 2171–2178. https://doi.org/10.23960/jtepl.v14i6.2171-2178