Kinetics of Thermal-Induced Physical Quality Alterations in Chicken Meat Processing

Authors

  • Nadya Klaresza Audrey IPB University
  • Eko Hari Purnomo IPB University
  • Nur Wulandari IPB University

DOI:

https://doi.org/10.23960/jtepl.v15i1.110-123
Abstract View: 12

Keywords:

Arrhenius equation, Chicken meat, D and Z values, Kinetics, Physical quality

Abstract

Thermal processing of food often leads to a reduction in quality, highlighting the need to optimize heating conditions based on the kinetics of quality changes. This study investigated the physical quality of chicken meat—including cooking loss, water-holding capacity, texture, and color—during heating in a water bath (75 and 95 °C) and a pressure cooker (110 °C) for defined durations and modeled the kinetics of these changes. Heat distribution tests confirmed uniform temperatures, as indicated by minimal differences between thermocouples and the cold spot, while heat penetration tests ensured thorough heating, with lag times of 18.25 ± 2.25, 16.13 ± 4.58, and 19.25 ± 4.77 minutes at 75, 95, and 110 °C, respectively. Changes in physical quality at constant temperatures followed first-order reaction kinetics, and the temperature effect was described using the Arrhenius equation. The Arrhenius model revealed that higher temperatures accelerated the rate of quality changes, resulting in increased cooking loss, shear force, L*, and browning index, whereas water-holding capacity and cohesiveness decreased. Comparison of the D and Z values for physical quality parameters with those of Clostridium botulinum spores (D121.1 °C = 0.22 min, Z = 10 °C) suggested that high-temperature, short-time treatments could minimize detrimental changes in chicken meat while effectively inactivating target microorganisms.

Downloads

Download data is not yet available.

Author Biographies

Nadya Klaresza Audrey, IPB University

Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology

Eko Hari Purnomo, IPB University

Head of the Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology

Nur Wulandari, IPB University

Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology

References

Ahn, H.S., Yu, S.S., Kim, C.Y., Kim, Y.W., Yoon, Y., Lee, H., & Park, S.H. (2024). Heat penetration and quality attributes of superheated steam sterilization (SHS) home meal replacement (HMR) meat products stew. LWT - Food Science and Technology, 191, 115621. https://doi.org/10.1016/j.lwt.2023.115621

Awuah, G.B., Ramaswamy, H.S., & Economides, A. (2007). Thermal processing and quality: Principles and overview. Chemical Engineering and Processing - Process Intensification, 46(6), 584–602. https://doi.org/10.1016/j.cep.2006.08.004.

Buzby, J.C., Wells, H.F., Axtman, B., & Mickey, J. (2009). Supermarket Loss Estimates For Fresh Fruit, Vegetables, Meat, Poultry, and Seafood and Their Use in the ERS Loss - Adjusted Food Availability Data (Economic Information Bulletin No. 44). U.S. Department of Agriculture, Economic Research Service. https://doi.org/10.22004/AG.ECON.58313

Chumngoen, W., Chen, C.-F., & Tan, F.-J. (2017). Effects of moist- and dry-heat cooking on the meat quality, microstructure and sensory characteristics of native chicken meat. Animal Science Journal, 89(1), 193–201. https://doi.org/10.1111/asj.12864

Combes, S., Lepetit, J., Darche, B., & Lebas, F. (2004). Effect of cooking temperature and cooking time on Warner–Bratzler tenderness measurement and collagen content in rabbit meat. Meat Science, 66(1), 91–96. https://doi.org/10.1016/S0309-1740(03)00019-6

Diao, M.M., André, S., & Membré, J.-M. (2014). Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679. International Journal of Food Microbiology, 174, 23–30. https://doi.org/10.1016/ j.ijfoodmicro.2013.12.029

Gerber, N., Scheeder, M.R.L., & Wenk, C. (2009). The influence of cooking and fat trimming on the actual nutrient intake from meat. Meat Science, 81(1), 148–154. https://doi.org/10.1016/j.meatsci.2008.07.012

Hidayat, C., Sumiati, & Iskandar, S. (2015). Persentase bobot karkas dan potongan komersial ayam Sentul-G3 yang diberi ransum mengandung dedak tinggi dengan suplementasi fitase dan ZnO. Jurnal Ilmu Pertanian Indonesia, 20(2), 131–136. https://doi.org/10.18343/jipi.20.2.131

Hindra, F., & Baik, O.-D. (2006). Kinetics of quality changes during food frying. Critical Reviews in Food Science and Nutrition, 46(3), 239–258. https://doi.org/10.1080/10408690590957124

Indiani, F., Titisari, D., & Lamidi, L. (2019). Waterbath design equipped with temperature distribution monitor, temperature and timer control parameters. Journal of Electronics, Electromedical Engineering, and Medical Informatics, 1(1), 1–6. https://doi.org/10.35882/jeeemi.v1i1.3

Ismail, I.M., Fahmy, A., Azab, A., Abadir, M., & Fateen, S.-E. (2013). Optimizing the sterilization process of canned food using temperature distribution studies. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 6(4), 26–33. https://doi.org/10.9790/2380-0642633

Katemala, S., Molee, A., Thumanu, K., & Yongsawatdigul, J. (2023). Heating temperatures affect meat quality and vibrational spectroscopic properties of slow- and fast-growing chickens. Poultry Science, 102(8), 102754. https://doi.org/10.1016/j.psj. 2023.102754

Kavitha, S., & Modi, V.K. (2007). Effect of water activity and temperature on degradation of 5′-inosine monophosphate in a meat model system. LWT - Food Science and Technology, 40(7), 1280–1286. https://doi.org/10.1016/j.lwt.2006.07.014

Kemnaker (Kementerian Ketenagakerjaan Republik Indonesia). (2021). Keputusan Menteri Ketenagakerjaan Nomor 103 Tahun 2021 tentang Penetapan Standar Kompetensi Kerja Nasional Indonesia Kategori Industri Pengolahan Golongan Pokok Industri Makanan Bidang Industri Pengolahan dan Pengawetan Produk Daging (Sub Bidang Non Produksi). Kementerian Ketenagakerjaan Republik Indonesia.

Kong, F., Tang, J., Rasco, B., & Crapo, C. (2007). Kinetics of salmon quality changes during thermal processing. Journal of Food Engineering, 83(4), 510–520. https://doi.org/10.1016/j.jfoodeng.2007.04.002

Kudryashov, L.S., & Kudryashova, O.A. (2023). Water-holding and water-holding capacity of meat and methods of its determination. Teoriya i Praktika Pererabotki Myasa [Theory and Practice of Meat Processing], 8(1), 62–70. https://doi.org/10.21323/2414-438X-2023-8-1-62-70

Kusnandar, F., Dafiq, H.H., Rahayu, W.P., & Irmawan, D. (2023). Evaluasi kecukupan panas dan pengembangan proses alternatif dalam sterilisasi komersial jamur kancing dalam kaleng. Jurnal Mutu Pangan, 10(2), 100–109. https://doi.org/10.29244/jmpi. 2023.10.2.100

Laksono, U.T., Suprihatin, S., Nurhayati, T., & Romli, M. (2019). Enhancement of textural quality from Daggertooth Pike Conger fish surimi with sodium tripolyphosphate and transglutaminase activator. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(2), 273–282. https://doi.org/10.17844/jphpi.v22i2.27373

Li, Y., Liang, S., Ye, G., Zhang, M., Feng, S., Wang, Z., Zhang, Q., & Sun, C. (2023). Effects of different sterilization methods on sensory quality and lipid oxidation of Dezhou braised chicken. Food Science and Technology (Campinas), 43, e119222. https://doi.org/10.1590/fst.119222

Ling, B., Tang, J., Kong, F., Mitcham, E.J., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: A review. Food and Bioprocess Technology, 8(2), 343–358. https://doi.org/10.1007/s11947-014-1398-3

Mehmood, W., Qian, S., Zhang, C., & Li, X. (2019). Biophysical properties and volumetric changes in breast meat of broilers and yellow-feathered chicken as affected by cooking process. International Journal of Food Properties, 22(1), 1935–1951. https://doi.org/10.1080/10942912.2019.1696361

Milicevic, D., Trbovic, D., Petrovic, Z., Jakovac-Strajn, B., Nastasijevic, I., & Koricanac, V. (2015). Physicochemical and functional properties of chicken meat. Procedia Food Science, 5, 191–194. https://doi.org/10.1016/j.profoo.2015.09.054

Moya, J., Lorente-Bailo, S., Ferrer-Mairal, A., Martínez, M.A., Calvo, B., Grasa, J., & Salvador, M.L. (2021). Color changes in beef meat during pan cooking: Kinetics, modeling and application to predict turn over time. European Food Research and Technology, 247, 2751–2764. https://doi.org/10.1007/s00217-021-03787-1

Park, C.H., Lee, B., Oh, E., Kim, Y.S., & Choi, Y.M. (2020). Combined effects of sous-vide cooking conditions on meat and sensory quality characteristics of chicken breast meat. Poultry Science, 99(6), 3286–3291. https://doi.org/10.1016/j.psj.2020. 03.004

Patriani, P., & Apsari, N.L. (2022). Peningkatan Mutu Daging Menggunakan Rempah. CV. Anugerah Pangeran Jaya Press, Medan.

Purnomo, E.H., Giriwono, P.E., Indrasti, D., Firlieyanti, A.S., & Kinasih, A.G. (2015). Parameter kinetika inaktivasi termal dan isolasi Staphylococcus aureus pada minuman dari gel cincau hijau dan rosela. Jurnal Teknologi dan Industri Pangan, 26(1), 124–131. https://doi.org/10.6066/jtip.2015.26.1.124

Qi, J., Li, X., Zhang, W., Wang, H., Zhou, G., & Xu, X. (2018). Influence of stewing time on the texture, ultrastructure and in vitro digestibility of meat from the yellow-feathered chicken breed. Animal Science Journal, 89(2), 474–482. https://doi.org/10.1111/asj.12929

Raits, E., Pinte, L., Kirse-Ozolina, A., & Muizniece-Brasava, S. (2021). A case study: Temperature distribution and heat penetration in steam-air retort, using glass jars and retort pouches. Rural Sustainability Research, 46(341), 90–96. https://doi.org/10.2478/plua-2021-0020

Saragih, D.S., Adawiyah, D.R., & Rungkat, F.Z. (2021). Sterilisasi komersial cassava chunk pada kemasan hermetis standing pouch dan perubahan sifat fisikokimianya. Jurnal Ilmu Pertanian Indonesia, 26(2), 184–195. https://doi.org/10.18343/jipi.26.2.184

Sembor, S., & Tinangon, R.M. (2022). Industri Pengolahan Daging. CV. Patra Media Grafindo, Bandung.

Sitanggang, A.B., Hunaefi, D., Adawiyah, D.R., Purnomo, E.H., Syamsir, E., Kusnandar, F., Wulandari, N., & Hariyadi, P. (2019). Landasan Teknik Pangan. IPB Press, Bogor.

Taikerda, T., & Leelawat, B. (2023). Effect of young jackfruit, wheat gluten, and soy protein isolate on physicochemical properties of chicken meat analogs. Kasetsart Journal: Agriculture and Natural Resources, 57(2), 201–210. https://doi.org/10.34044/ j.anres.2023.57.2.01

Tan, H., Huang, Q., Yu, J., Lu, Y., Wei, L., Shi, L., Yu, W., & Qiao, Y. (2025). Analysis of factors affecting the browning of crayfish hepatopancreas after high-temperature sterilization. LWT - Food Science and Technology, 223, 117792. https://doi.org/ 10.1016/j.lwt.2025.117792

Toledo, R.T. (2007). Fundamentals of Food Process Engineering (3rd ed.). Springer Science+Business Media, LLC.

Tomasz, K. (2024). Thermal processing: A key method in food preservation. African Journal of Food Science and Technology, 15(12), 1–2.

Triyannanto, E., Febrisiantosa, A., Kusumaningrum, A., Amri, A.F., Fauziah, S., Sulistyono, E.P., Dewandaru, B.M., & Nurhikmat, A. (2022). The quality characteristics of ready-to-eat empal gentong affected by meat pre-cooking. Food Science of Animal Resources, 42(4), 557–565. https://doi.org/10.5851/kosfa.2021.e70

Wattanachant, S., Benjakul, S., & Ledward, D.A. (2005). Effect of heat treatment on changes in texture, structure and properties of Thai indigenous chicken muscle. Food Chemistry, 93(2), 337–348. https://doi.org/10.1016/j.foodchem.2004.09.032

Yang, X., Li, Y., Wang, P., Luan, D., Sun, J., Huang, M., Wang, B., & Zheng, Y. (2022). Quality changes of duck meat during thermal sterilization processing caused by microwave, stepwise retort, and general retort heating. Frontiers in Nutrition, 9, 1016942. https://doi.org/10.3389/fnut.2022.1016942

Zhang, M., Yang, Y., Zhang, H., Li, C., He, L., & Deng, L. (2024). Changes in food quality and characterization under thermal accumulation conditions during Chinese cooking. Food Science & Nutrition

Downloads

Published

2026-02-06

How to Cite

Audrey, N. K., Purnomo, E. H., & Wulandari, N. (2026). Kinetics of Thermal-Induced Physical Quality Alterations in Chicken Meat Processing. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 15(1), 110–123. https://doi.org/10.23960/jtepl.v15i1.110-123