Comparison of Machine Learning Models for Classifying Consumer Sentiment of Coffee Shops on Social Media X
DOI:
https://doi.org/10.23960/jtepl.v14i5.1905-1912
Abstract View: 189
Keywords:
Logistic regression, Naïve bayes, Sentiment analysis, Social media, Support vector machineAbstract
With the intense competition in the coffee shop industry, understanding consumer opinions has become crucial for businesses. This study analyzes consumer sentiment toward the Janji Jiwa and Kopi Kenangan brands using tweet data from platform X. Sentiments were classified into positive, neutral, and negative categories using three algorithms: Logistic Regression (LR), Naïve Bayes (NB), and Support Vector Machine (SVM). The performance of these algorithms, in terms of accuracy and predictive capability, was evaluated using the TF-IDF method for text representation. The evaluation results show that LR achieved the highest accuracy at 79%, followed by SVM (78%) and NB (75%). Additionally, LR recorded consistent and balanced scores across the precision, recall, and F1-score metrics. These findings indicate that LR and SVM are more effective for multiclass sentiment classification in social media contexts
Downloads
References
Alfajri, M.F., Adhiazni, V., & Aini, Q. (2019). Pemanfaatan social media analytics pada Instagram dalam peningkatan efektivitas pemasaran. Interaksi: Jurnal Ilmu Komunikasi, 8(1), 34–42. https://doi.org/10.14710/interaksi.8.1.34-42
Amalia, F.N., Ariadi, B.Y., & Widyastuti, D.E. (2022). Comparative analysis of brand equity of Janji Jiwa Coffee Shop with Kenangan Coffee Shop in Malang City. AGRIMOR, 7(2), 45-53. https://doi.org/10.32938/ag.v7i2.1589
Anugrah, D.P., & Suparwito, H. (2022). Analisis sentimen bantuan langsung tunai COVID-19 menggunakan algoritma support vector machine. Seminar Nasional Sanata Dharma Berbagi 2022. Accessed on September 19, 2025 from: https://e-conf.usd.ac.id/index.php/usdb/usdb2022/paper/view/1730
Budianto, A.G., Rusilawati, Suryo, A.T.E., Cahyono, G.R., Zulkarnain, A.F., & Martunus. (2024). Perbandingan performa algoritma support vector machine (SVM) dan logistic regression untuk analisis sentimen pengguna aplikasi retail di android. Jurnal Sains dan Informatika, 10(2). https://doi.org/10.34128/jsi.v10i2.911
Daqiqil, I. (2021). Machine Learning: Teori, Studi Kasus, dan Implementasi Menggunakan Python. Pekanbaru: UR Press. Diakses dari https://zenodo.org/records/5113507
Han, J.W., & Kamber, M. (2001). Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufman Publisher. Diakses dari https://hanj.cs.illinois.edu/bk2/toc.pdf
Hasri, C.F., & Alita, D. (2022). Penerapan metode naive bayes classifier dan support vector machine pada analisis sentimen terhadap dampak virus corona di twitter. Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), 3(2), 145-160. Diakses dari https://jim.teknokrat.ac.id/index.php/informatika/article/view/2026
Henderi & Siddique, Q. (2024). Comparative analysis of sentiment classification techniques on flipkart product reviews: A study using logistic regression, SVC, random forest, and gradient boosting. Journal of Digital Market and Digital Currency, 1(1), 21-42. https://doi.org/10.47738/jdmdc.v1i1.4
Hidayah, N., Nur, A., Supira, W., Fauziah, E., Ratna, S., Fuzi, Y., Ramadita, N., Rifki, M., Haidar, M., Martin, S., & Huda, M. (2024). Analisis perbandingan customer experience dan harga pada coffee shop “Kopi Kenangan”, "Janji Jiwa" dan “Starbucks” di Cikarang. Journal of Management and Creative Business, 2(3), 255-267. https://doi.org/10.30640/jmcbus.v2i3.2871
Hosmer, D.W., Lemeshow, S., & Sturdivant, R.X. (2013). Applied Logistic Regression (Vol. 398). John Wiley & Sons. Diakses dari https://dl.icdst.org/pdfs/files4/7751d268eb7358d3ca5bd88968d9227a.pdf
Kamruzzaman, M. & Kim, G.L. (2023). Efficient sentiment analysis: a resource-aware evaluation of feature extraction techniques, ensembling, and deep learning models. Proceeding of the 11th International Workshop on Natural Language Processing for Social Media, 9-20. https://aclanthology.org/2023.socialnlp-1.2.pdf
Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers. Diakses dari https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf
Mardikaningsih, R. (2021). Pencapaian kepuasan pelanggan pada jasa pengiriman barang melalui harga, ekuitas merek, dan kualitas pelayanan. Jurnal Baruna Horizon, 4(1), 64-73. https://doi.org/10.52310/jbhorizon.v4i1.58
Mahendra, A., Pamungkas, A.P., & Aziz, I.W.F. (2023). Analisis sentimen dari media sosial twitter terhadap Kopi Janji Jiwa dan Kopi Kenangan menggunakan Metode Machine Learning. [Undergraduated Thesis]. Universitas Gadjah Mada.
Manning, C.D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press. Diakses dari https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
Maulana, A.N., Pamungkas, A.P., & Falah, M.A.F. (2021). Sentimen Ulasan untuk Peningkatan Layanan dan Pengalaman Pelanggan Menggunakan Bahasa Pemograman Python (Studi di Toko Online Produk Makanan Pendamping ASI) [Undergraduated Thesis]. Universitas Gadjah Mada.
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
Priyanto, A., & Ma'arif, M.R. (2018). Implementasi web scraping dan text mining untuk akuisisi dan kategorisasi indormasi dari internet (Studi kasus: Tutorial hidroponik). Indonesian Journal of Information Systems (IJIS), 1(1), 25-33. https://doi.org/10.24002/ijis.v1i1.1664
Ramos, J. (2003). Using TF-IDF to determine word relevance in document queries. Proceedings of the First Instructional Conference on Machine Learning, 1-4. Diakses dari https://www.scribd.com/document/339224468/TF-IDF-to-determine-word-relevance-in-document-queries-pdf
Shadeni, E.A., & Erinos. (2022). Pengaruh market share dan intellectual capital terhadap kinerja keuangan perbankan syariah di Indonesia. Jurnal Eksplorasi Akuntansi (JEA), 4(2), 363-376. https://doi.org/10.24036/jea.v4i2.531
Siringoringo, R., & Jamaluddin. (2019). Text mining dan klasterisasi sentimen pada ulasan produk toko online. Jurnal Penelitian Teknik Informatika UNPRI, 2(2), 314-319. https://doi.org/10.34012/jutikomp.v2i1.456
Solihin, F., Awaliyah, S., & Shofa, A.M.A. (2021). Pemanfaatan Twitter sebagai media penyebaran informasi oleh dinas komunikasi dan informatika. Jurnal Pendidikan Ilmu Pengetahuan Sosial (JPIPS), 1(13), 52-58. https://e-journal.upr.ac.id/index.php/JP-IPS/article/view/2813
Toffin Indonesia. (2020, November 12). Toffin Indonesia Merilis Riset “2020 Brewing in Indonesia”. Diambil kembali dari TOFFIN INSIGHT: Diakses dari https://insight.toffin.id/toffin-stories/toffin-indonesia-merilis-riset-2020-brewing-in-indonesia/
Wang, J. (2025). Comparative analysis of machine learning and deep learning models for text emotion classification in federated learning. Applied and Computational Engineering, 155, 220-227. https://doi.org/10.54254/2755-2721/2025.GL23568
Zhafira, D.F., Rahayudi, B., & Indriati. (2021). Analisis sentimen kebijakan kampus merdeka menggunakan naive bayes dan pembobotan TF-IDF berdasarkan komentar pada Youtube. Jurnal Sistem Informasi, Teknologi Informasi, dan Edukasi Sistem Informasi (JUST-SI), 2(1), 55-63. https://doi.org/10.25126/justsi.v2i1.24
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agung Putra Pamungkas

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung

JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


