Effects of ZnO-Based Smart Urea Coating on Ammonium Release and Characterization of Soil Ureolytic Bacteria in Loamy Soil
DOI:
https://doi.org/10.23960/jtepl.v15i1.322-334
Abstract View: 0
Keywords:
Ammonium, Coating, Nanotechnology, Urea, UreaseAbstract
The application of ZnO-coated urea is a promising strategy to reduce nitrogen losses and improve zinc availability in soils. This study aimed to evaluate the effects of ZnO-coated urea on soil ammonium concentrations and ureolytic bacterial populations. A completely randomized design was used with five treatments:control (CU), uncoated urea (CU) and ZnO-coated urea at three different coating (bulk ZnO (NCU-Z), ZnO NPs (NCU-ZNP), and ZnO NPs combined with bentonite NPs (NCU-ZBNP)), each with four replications. Soil samples were incubated on sterile jars under controlled conditions for 8 weeks and used loamy soil as a medium. Ammonium concentrations were measured using the spectrohotometry, while ureolytic bacteria were enumerated using the total plate count (TPC). NCU characterization results revealed inconsistencies in coating thickness, however, it has shown significant results on soil ammonium content and total ureolytic bacteria population. Results on the number of ureolytic bacterial populations showed that NCU-ZNP treatment could reduce the number of bacteria up to 77.8%. The research results also showed that the NCU-ZBNP treatment significantly maintained soil ammonium levels that were 1.76 times higher compared to CU.These findings suggest that ZnO-coated urea can slow nitrogen transformation and potentially improve nitrogen use efficiency while influencing soil microbial communities.
Downloads
References
Abdelmeged, E.A., Brunetti, G., Shetaya, W.H., & Marzouk, E.R. (2023). Cosmetic nanomaterials in the environment: Nano-zinc oxide and zinc-influence on ssoil microorganisms. Applied Nanoscience, 13, 5921–5933. https://doi.org/10.1007/s13204-023-02863-w
Abdullah, B., Niazi, M.B.K., Jahan, Z., Khan, O., Shahid, A., Shah, G.A., Azeem, B., Iqbal, Z., & Mahmood, A. (2022). Role of zinc-coated urea fertilizers in improving nitrogen use efficiency, soil nutritional status, and nutrient use efficiency of test crops. Frontiers in Environmental Science, 10, 888865. https://doi.org/10.3389/fenvs.2022.888865
Aliyu, A.D., Mustafa, M., Aziz, N.A.A., Kong, Y.C., & Hadi, N.S. (2023). Assessing indigenous soil ureolytic bacteria as potential agents for soil stabilization. Journal of Tropical Biodiversity and Biotechnology, 8(1), jtbb75128. https://doi.org/10.22146/ jtbb.75128
Baker, M.B., Abendeh, R., Sharo, A., & Hanna, A. (2022). Stabilization of sandy soils by bentonite clay slurry at laboratory bench and pilot scales. Coatings, 12(22), 1922. https://doi.org/10.3390/coatings12121922
Beig, B., Niazi, M.B.K., Sher, F., Jahan, Z., Malik, U.S., Khan, M.D., Américo-Pinheiro, J.H.P., & Vo, D.V.N. (2022). Nanotechnology-based controlled release of sustainable fertilizers. A review. Environmental Chemistry Letters, 20(4), 2709–2726. https://doi.org/10.1007/s10311-022-01409-w
Cantarella, H., Otto, R., Soares, J.R., & Silva, A.G.B. (2018). Agronomic efficiency of NBPT as a urease inhibitor: A review. Advanced Research, 13, 19–27. https://doi.org/10.1016/j.jare.2018.05.008
Cheng, G., Zhu, H.H., Wen, Y.N., Shi, B., & Gao, L. (2020). Experimental investigation of consolidation properties of nano-bentonite mixed clayey soil. Sustainability, 12(459), 459. https://doi.org/10.3390/su12020459
Degryse, F., Harris, H., Baird, R., Andelkovic, I., da Silva, R.C., Kabiri, S., Yazici, A., Cakmak, I., & McLaughlin, M. J. (2024). Acid coating to increase availability of zinc in phosphate fertilizers. Plant and Soil, 495(1–2), 27–41. https://doi.org/10.1007/s11104-023-06323-w
Dimkpa, C. O., Andrews, J., Fugice, J., Singh, U., Bindraban, P. S., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2020). Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Frontiers in Plant Science, 11, 168. https://doi.org/10.3389/fpls.2020.00168
Dubey, A., & Mailapalli, D. R. (2019). Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environmental Technology and Innovation, 16, 100452. https://doi.org/10.1016/j.eti.2019.100452
Eviati, E., Sulaeman, S., Herawaty, L., Anggria, L., Usman, U., Tantika, H.E., Prihatini, R., & Wuningrum, P. (2023). Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Balai Pengujian Standar Instrumen Tanah dan Pupuk, Kementerian Pertanian Republik Indonesia, Bogor.
Farzadfar, S., Knight, J.D., & Congreves, K.A. (2021). Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition. Plant and Soil, 462, 7–23. https://doi.org/10.1007/s11104-021-04860-w
Fowler, D., Steadman, C.E., Stevenso, D., Coyle, M., Rees, R.M., Skiba, U.M., Sutton, M.A., Cape, J.N., Dore, A.J., Vieno, M., Simpson, D., Zaehle, S., Stocker, B.D., Rinaldi, M., Facchini, M.C., Flechard, C.R., M. Twigg, E., Erisman, J.W., & Galloway, J.N. (2015). Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 15(January), 1747–1868. https://doi.org/10.5194/acpd-15-1747-2015
Grzyb, A., Wolna-Maruwka, A., & Niewiadomska, A. (2021). The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy, 11(7), 1415. https://doi.org/10.3390/agronomy11071415
Hayashi, K., Tokida, T., Arai, M., Sakai, H., Nakamura, H., & Hasegawa, T. (2022). Fertilizer-derived nitrogen use of two varieties of single-crop paddy rice: a free-air carbon dioxide enrichment study using polymer-coated 15N-labeled urea. Soil Science and Plant Nutrition, 68(1), 41–52. https://doi.org/10.1080/00380768.2021.2003163
Helal, M. I. D., El-Mogy, M. M., Khater, H. A., Fathy, M. A., Ibrahim, F. E., Li, Y. C., Tong, Z., & Abdelgawad, K. F. (2023). A controlled-release nanofertilizer improves tomato growth and minimizes nitrogen consumption. Plants, 12(10), 1978. https://doi.org/10.3390/plants12101978
Huddell, A.M., Galford, G.L., Tully, K.L., Crowley, C., Palm, C.A., Neill, C., Hickman, J.E., & Menge, D.N.L. (2020). Meta-analysis on the potential for increasing nitrogen losses from intensifying tropical agriculture. Global Change Biology, 26(3), 1668–1680. https://doi.org/10.1111/gcb.14951
Hussain, Z., Cheng, T., Irshad, M., Khattak, R.A., Yao, C., Song, D., & Mohiuddin, M. (2022). Bentonite clay with different nitrogen sources can effectively reduce nitrate leaching from sandy soil. PLoS ONE, 17(12), e0278824. https://doi.org/10.1371/journal.pone.0278824
IFA. (2025). Public Summary Short-Term Fertilizer Outlook 2024 – 2025. Public Summary Short-Term Fertilizer Outlook 2024 – 2025. https://www.fertilizer.org/wp.content/uploads/2025/02/2024_ifa_short_term_outlook_report.pdf (13 August 2025)
Jasim, N.A., Khadim, A.A., & Kadur, K.Z. (2023). Antibacterial activity of ZnO nanoparticles against diverse bacterial strains. Science Archives, 04(03), 195–198. https://doi.org/10.47587/sa.2023.4303
Jin, D., Zhao, S., Zheng, N., Bu, D., Beckers, Y., Denman, S. E., McSweeney, C. S., & Wang, J. (2017). Differences in ureolytic bacterial composition between the rumen digesta and rumen wall based on ureC gene classification. Frontiers in Microbiology, 8, 385. https://doi.org/10.3389/fmicb.2017.00385
Jingjing, S., Mijia, Z., Xiaoqia, Y., Chi, Z., & Jun, Y. (2015). Urease Activities and Organic Matter Responses to Nitrogen Rate in Cultivated Soil. In The Open Biotechnology Journal, 9, 14-20. http://dx.doi.org/10.2174/1874070701509010014
Kurnia, U., Agus, F., Adimihardja, A. et al. (2023). Sifat Fisik Tanah dan Metode Analisisnya (2nd ed.). Balai Pengujian Standar Instrumen Tanah dan Pupuk, Kementerian Pertanian Republik Indonesia, Bogor. ISBN: 978-602-8039-49-9.
Lahive, E., Matzke, M., Svendsen, C., Spurgeon, D.J., Pouran, H., Zhang, H., Lawlor, A., Glória Pereira, M., & Lofts, S. (2023). Soil properties influence the toxicity and availability of Zn from ZnO nanoparticles to earthworms. Environmental Pollution, 319, 120907. https://doi.org/10.1016/j.envpol.2022.120907
Liu, S., Zheng, N., Wang, J., & Zhao, S. (2025). Nitrogen metabolism of the highly ureolytic bacterium Proteus penneri S99 isolated from the rumen. BMC Microbiology, 25, Article ID 104. https://doi.org/10.1186/s12866-025-03808-9
Maleki, S., & Karimi-Jashni, A. (2017). Effect of ball milling process on the structure of local clay and its adsorption performance for Ni(II) removal. Applied Clay Science, 137, 213–224. https://doi.org/10.1016/j.clay.2016.12.008
Mekonnen, E., Kebede, A., Nigussie, A., Kebede, G., & Tafesse, M. (2021). Isolation and characterization of urease-producing soil bacteria. Microbiology, 2021, Article ID 8888641. https://doi.org/10.1155/2021/8888641
Molefe, F.V., Koao, L.F., Dejene, B.F., & Swart, H.C. (2015). Phase formation of hexagonal wurtzite ZnO through decomposition of Zn(OH)2 at various growth temperatures using CBD method. Optical Materials, 46, 292–298. https://doi.org/10.1016/j.optmat.2015.04.034
Neto, J.F.D., Fernandes, J.V., Rodrigues, A.M., Menezes, R.R., & Neves, G.de A. (2023). New urea controlled-release fertilizers based on bentonite and carnauba wax. Sustainability, 15(7), 6002. https://doi.org/10.3390/su15076002
Noll, L., Zhang, S., Zheng, Q., Hu, Y., & Wanek, W. (2019). Wide-spread limitation of soil organic nitrogen transformations by substrate availability and not by extracellular enzyme content. Soil Biology and Biochemistry, 133(February), 37–49. https://doi.org/10.1016/j.soilbio.2019.02.016
Nurhidayati, N. (2017). Kesuburan dan Kesehatan Tanah: Suatu Pengantar Penilaian Kualitas Tanah Menuju Pertanian Berkelanjutan. Intimedia, Malang. ISBN: 978-602-1507-68-1
Pohshna, C., & Mailapalli, D.R. (2023). Modeling the particle size of nanomaterials synthesized in a planetary ball mill. OpenNano, 14(October), 100191. https://doi.org/10.1016/j.onano.2023.100191
Prywer, J., Torzewska, A., & Mielniczek-Brzóska, E. (2024). Understanding the role of zinc ions on struvite nucleation and growth in the context of infection urinary stones. Metallomics, 16(5), mfae017. https://doi.org/10.1093/mtomcs/mfae017
Qi, Z., & Wang, S. (2024). Nano materials preparation mechanism of planetary ball mill. Research Square, 2024, 1–15. https://doi.org/10.21203/rs.3.rs-5001409/v1
Rajput, . D., Minkina, T.M., Behal, A., Sushkova, S.N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V.S., Purvis, W.O., Ghazaryan, K.A., & Movsesyan, H.S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. J. Environmental Nanotechnology, Monitoring and Management, 9, 76–84. https://doi.org/10.1016/j.enmm.2017.12.006
Ransom, C. J., Jolley, V. D., Blair, T. A., Sutton, L. E., & Hopkins, B. G. (2020). Nitrogen release rates from slow- and controlled-release fertilizers influenced by placement and temperature. PLoS ONE, 15, e0234544. https://doi.org/10.1371/journal.pone.0234544
Ray, H., Saetta, D., & Boyer, T. H. (2018). Characterization of urea hydrolysis in fresh human urine and inhibition by chemical addition. Environmental Science: Water Research and Technology, 4(1), 87–98. https://doi.org/10.1039/c7ew00271h
Sadiq, M., Mazhar, U., Shah, G. A., Hassan, Z., Iqbal, Z., Mahmood, I., Wattoo, F. M., Niazi, M. B. K., Bran, A., Arthur, K., Ali, N., & Rashid, M. I. (2021). Zinc plus biopolymer coating slows nitrogen release, decreases ammonia volatilization from urea and improves sunflower productivity. Polymers, 13(18), 3170. https://doi.org/10.3390/polym13183170
Setiawati, M. R., Ufah, N., Hindersah, R., & Suryatmana, P. (2019). Peran mikroba dekomposer selulolitik dari sarang rayap dalam menurunkan kandungan selulosa limbah pertanian berselulosa tinggi. J. Soilrens, 17(2), 1–8.
Shen, Y., Zhou, J., & Du, C. (2019). Development of a polyacrylate/silica nanoparticle hybrid emulsion for delaying nutrient release in coated controlled-release urea. Coatings, 9(2), 88. https://doi.org/10.3390/coatings9020088
Swify, S., Mažeika, R., Baltrusaitis, J., & Drapanauskait, D. (2023). Review: Modified urea fertilizers and their effects on improving Nitrogen Use Efficiency (NUE). Sustainability, 16(1), 188. https://doi.org/10.3390/su16010188
Tapia-Hernández, J. A., Madera-Santana, T. J., Rodríguez-Félix, F., & Barreras-Urbina, C. G. (2022). Controlled and prolonged release systems of urea from micro-and nanomaterials as an alternative for developing a sustainable agriculture: A review. Nanomaterials, 2022, Article ID 5697803. https://doi.org/10.1155/2022/5697803
Vejan, P., Khadiran, T., Abdullah, R., & Ahmad, N. (2021). Controlled release fertilizer: A review on developments, applications and potential in agriculture. Controlled Release, 339, 321–334. https://doi.org/10.1016/j.jconrel.2021.10.003
Wallace, A. J., Armstrong, R. D., Grace, P. R., Scheer, C., & Partington, D. L. (2020). Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutrient Cycling in Agroecosystems, 116(1), 41–56. https://doi.org/10.1007/s10705-019-10028-x
Wang, L., Fan, D., Chen, W., & Terentjev, E. M. (2015). Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Scientific Reports, 5, 15159. https://doi.org/10.1038/srep15159
World Bank. (2025). Fertilizer Consumption (kilograms per hectare of arable land). Accesed from on 23 December 2025 from: https://data.worldbank.org/indicator/AG.CON.FERT.ZS
Yadav, A., Yadav, K., & Abd-Elsalam, K. A. (2023). Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. Agrochemicals, 2(2), 296–336. https://doi.org/10.3390/agrochemicals2020019
Yu, X., Keitel, C., Zhang, Y., Wangeci, A. N., & Dijkstra, F. A. (2022). Global meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maize. Agriculture, Ecosystems and Environment, 338, 108089. https://doi.org/10.1016/j.agee.2022.108089
Zhang, J., Zheng, N., Shen, W., Zhao, S., & Wang, J. (2020). Synchrony degree of dietary energy and nitrogen release influences microbial community, fermentation, and protein synthesis in a rumen simulation system. Microorganisms, 8(2), 231. https://doi.org/10.3390/microorganisms8020231
Zheng, M., Zhu, P., Zheng, J., Xue, L., Zhu, Q., Cai, X., Cheng, S., Zhang, Z., Kong, F., & Zhang, J. (2021). Effects of soil texture and nitrogen fertilisation on soil bacterial community structure and nitrogen uptake in flue-cured tobacco. Scientific Reports, 11, 22643. https://doi.org/10.1038/s41598-021-01957-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Fathia Meidy Nurindriana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung

JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


