Artificial Neural Network Backpropagation Method for Predicting Soil Nutrient Content

Artificial Neural Network Backpropagation Method for Predicting Soil Nutrient Content

Authors

  • Witaningsih Witaningsih Universitas Lampung
  • Sri Ratna Sulistiyanti Universitas Lampung
  • Mareli Telaumbanua Universitas Lampung
  • F X Arinto Setyawan Universitas Lampung
  • Helmy Fitriawan Universitas Lampung
  • Rita Anggraini Universitas Lampung

DOI:

https://doi.org/10.23960/jtepl.v14i6.2424-2438
Abstract View: 22

Keywords:

soil nutrient prediction, artificial neural network, nitrogen, phosphorus, potassium, soil physical parameters

Abstract

Monitoring soil nutrient levels such as nitrogen (N), phosphorus (P), and potassium (K) is essential to support fertilizer efficiency and sustainable agricultural land management. However, commonly used laboratory-based analytical methods are time-consuming and costly. Therefore, alternative approaches that are more practical and efficient are needed. This study aimed to develop an Artificial Neural Network (ANN)-based system for predicting soil nutrient levels using soil physical parameters, namely pH, temperature, moisture content, and electrical resistance, as input variables. Data were collected from red-yellow podzolic soil subjected to different fertilization treatments. After normalization, the data were trained using an ANN model with four input nodes, two hidden layers (each consisting of five nodes), and one output node, employing the backpropagation algorithm and evaluating 27 combinations of activation functions. The training results showed coefficients of determination (R²) of 0.9642 for nitrogen, 1.0000 for phosphorus, and 0.9996 for potassium, with RMSE values of 0.0107, 10.5386, and 0.016457 and RRMSE values of 8.5048%, 0.79786%, and 1.581111%, respectively. During validation, R² values of 0.7218 (nitrogen), 0.6479 (phosphorus), and 0.6137 (potassium) were obtained. Nitrogen prediction exhibited good accuracy (RMSE 0.0222; RRMSE 15.54%), potassium prediction showed moderate accuracy (RMSE 0.2963; RRMSE 28.46%), while phosphorus prediction resulted in relatively high errors (RMSE 1066.77; RRMSE 80.98%), indicating the need for further model development.

Downloads

Download data is not yet available.

Author Biographies

Witaningsih Witaningsih, Universitas Lampung

Magister Teknik Elektro, Fakultas Teknik

Sri Ratna Sulistiyanti, Universitas Lampung

Magister Teknik Elektro, Fakultas Teknik

Mareli Telaumbanua, Universitas Lampung

Jurusan Teknik Pertanian, Universitas Lampung

F X Arinto Setyawan, Universitas Lampung

Magister Teknik Elektro, Universitas Lampung

Helmy Fitriawan, Universitas Lampung

Magister Teknik Elektro, Fakultas Teknik

Rita Anggraini, Universitas Lampung

Magister Teknik Elektro, Fakultas Teknik

References

Alwi, M.K., Razie, F., & Kurnain, A. (2023). Hubungan ketersediaan fosfor dan kelarutan Fe pada tanah sawah sulfat masam. Acta Solum, 1(2), 61–67.

Amar, R., Muyassir, & Hifnalisa. (2022). Kajian status kesuburan tanah podsolik merah kuning pada berbagai tutupan lahan di Kabupaten Gayo Lues. Jurnal Ilmiah Mahasiswa Pertanian, 7(4), 1022-1028. https://doi.org/10.17969/jimfp.v7i4.22362

Ampelakiotis, V., Perikos, I., Hatzilygeroudis, I., & Tsihrintzis, G. (2021). Optical recognition of handwritten logic formulas using neural networks. Electronics, 10(22), 2761. https://doi.org/10.3390/electronics10222761

Amri, M.M., & Sumiharto, R. (2019). Sistem pengukuran nitrogen, fosfor, kalium dengan local binary pattern dan analisis regresi. Indonesian Journal of Electronics and Instrumentation Systems (IJEIS), 9(2), 107. https://doi.org/10.22146/ijeis.34132

As’ari, C.H., Ramadan, D., & Damayanti, T.N. (2022). Perancangan dan realisasi sistem monitoring unsur hara dan kelembaban tanah menggunakan Raspberry Pi. e-Proceeding of Applied Science, 8(1), 94-110.

Badan Pusat Statistik. (2023). Hasil Sensus Pertanian 2023. https://sensus.bps.go.id/main/index/st2023

Hartono, A., Firdaus, M., Purwono, Barus, B., Aminah, M., & Simanihuruk, D.M.P. (2022). Evaluasi dosis pemupukan rekomendasi Kementerian Pertanian untuk tanaman padi. Jurnal Ilmu Pertanian Indonesia, 27(2), 153–164. https://doi.org/10.18343/jipi.27.2.153

Kujawa, S., & Niedbała, G. (2021). Artificial neural networks in agriculture. Agriculture, 11(6), 497. https://doi.org/10.3390/agriculture11060497

Lisa, L., Basir, M., & Hasanah, U. (2022). Status hara nitrogen, fosfor, kalium dan tingkat kesuburan tanah pada tiga penggunaan lahan berbeda di Kecamatan Dolo Kabupaten Sigi. Mitra Sains, 10(1), 23–32.

López-Aguilar, K., Benavides-Mendoza, A., González-Morales, S., Juárez-Maldonado, A., Chiñas-Sánchez, P., & Morelos-Moreno, A. (2020). Artificial neural network modeling of greenhouse tomato yield and aerial dry matter. Agriculture, 10(4), 97. https://doi.org/10.3390/agriculture10040097

Mohmed, G., Heynes, X., Naser, A., Sun, W., Hardy, K., Grundy, S., & Lu, C. (2023). Modelling daily plant growth response to environmental conditions in Chinese solar greenhouse using Bayesian neural network. Scientific Reports, 13, 4379. https://doi.org/10.1038/s41598-023-30846-y

Mostafa, S., & Amano, H. (2019). Effect of clustering data in improving machine learning model accuracy. Journal of Theoretical and Applied Information Technology, 97(21), 2973–2981.

Normah, Rifai, B., Vambudi, S., & Maulana, R. (2022). Analisa sentimen perkembangan VTuber dengan metode support vector machine berbasis SMOTE. Jurnal Teknik Komputer AMIK BSI, 8(2), 174–180.

Nurani, A.T., Setiawan, A., & Susanto, B. (2023). Perbandingan kinerja regresi decision tree dan regresi linear berganda untuk prediksi BMI pada dataset asthma. Jurnal Sains dan Edukasi Sains, 6(1), 34–43. https://doi.org/10.24246/juses.v6i1p34-43

Salam, A.K. (2020). Ilmu tanah. Global Madani Press.

Salsabila, D., Darmawan, D., & Qurthobi, A. (2021). Studi pendekatan metode induksi medan magnet dalam penentuan kadar unsur hara NPK pada tanah. e-Proceeding of Engineering, 8(5), 6005-6013.

Santhoshkumar, P., Sridevi, G., Thiyageshwari, S., Maheswari, M., & Gnanachitra, M. (2023). Long-term impact of inorganic fertilizers and manures on maize yield and soil nutrient status in a calcareous inceptisol in India. International Journal of Plant & Soil Science, 35(18), 1–29. https://doi.org/10.9734/ijpss/2023/v35i183487

Sari, M.A.W., Ivansyah, O., & Nurhasanah. (2019). Hubungan konduktivitas listrik tanah dengan unsur hara NPK dan pH pada lahan pertanian gambut. Prisma Fisika, 7(2). https://doi.org/10.26418/pf.v7i2.33358

Sujon, K.M., Hassan, R.B., Towshi, Z.T., Othman, M.A., Samad, M.A., & Choi, K. (2024). When to use standardization and normalization: Empirical evidence from machine learning models and XAI. IEEE Access, 12, 135300–135314. https://doi.org/10.1109/ACCESS.2024.3462434

Suryadibrata, A., & Chandra, D.P. (2019). Implementasi jaringan saraf tiruan backpropagation untuk pengenalan karakter pada dokumen tercetak. Ultima Computing: Jurnal Sistem Komputer, 11(2), 81–89. https://doi.org/10.31937/sk.v11i2.1456

Triadiawarman, D., Aryanto, D., & Krisbiyantoro, J. (2022). Peran unsur hara makro terhadap pertumbuhan dan hasil bawang merah (Allium cepa L.). Jurnal Agrifor, 12(1), 27–32. https://doi.org/10.31293/agrifor.v21i1.5795

Xing, Z., Tian, K., Du, C., Li, C., Zhou, J., & Chen, Z. (2019). Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy. Geoderma, 335, 94–103. https://doi.org/10.1016/j.geoderma.2018.08.003

Downloads

Published

2025-12-29

How to Cite

Witaningsih, W., Sulistiyanti, S. R., Telaumbanua, M., Setyawan, F. X. A., Fitriawan, H., & Anggraini, R. (2025). Artificial Neural Network Backpropagation Method for Predicting Soil Nutrient Content: Artificial Neural Network Backpropagation Method for Predicting Soil Nutrient Content. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(6), 2424–2438. https://doi.org/10.23960/jtepl.v14i6.2424-2438