Genetic Variability of Lumbu Kuning and Lumbu Hijau Garlic Varieties Induced by ⁶⁰Co Gamma Ray Irradiation

Authors

  • Adin Novitasari Universitas Jember
  • Afifuddin Latif Adiredjo Brawijaya University
  • Lita Soetopo Brawijaya University

DOI:

https://doi.org/10.23960/jtepl.v15i1.233-242
Abstract View: 13

Keywords:

Aneuploid, Gamma rays, Mutation

Abstract

Garlic has limited genetic variability because the offspring are phenotypically identical to the parent plant. One approach to increase variability is mutation breeding using gamma irradiation. This study aimed to evaluate the effects of different gamma-ray doses on growth characteristics, physiological traits, chromosome number, and to determine the LD₅₀ (lethal dose 50%) in Lumbu Kuning and Lumbu Hijau garlic varieties. The experiment was conducted from May to September 2021 in Ngroto Village, Pujon District, Malang Regency, using a single-plot design with observations on individual plants. Garlic bulbs were irradiated with gamma rays at doses of 0, 2, 4, 6, 8, and 10 Gy. The t-test analysis of the M0 generation indicated that gamma irradiation significantly affected growth parameters, including leaf length and width, number of leaves, and plant height, compared to the control. The lowest mean leaf length (7.81 cm), number of leaves (3.22), and plant height (12.32 cm) were observed in the Lumbu Hijau variety at 10 Gy, while the lowest leaf width (0.37 cm) occurred in Lumbu Kuning at 8 Gy, indicating phenotypic reduction at higher doses. The highest chlorophyll content (1,091 mg/g) was recorded in Lumbu Hijau treated with 8 Gy. Gamma irradiation also induced chromosomal abnormalities, including aneuploidy with chromosome numbers such as 2n=2x−1 and 2n=2x+4. These results demonstrate that low-dose gamma irradiation can generate useful variability for garlic improvement programs.

Downloads

Download data is not yet available.

Author Biographies

Adin Novitasari, Universitas Jember

Agrotechnology Study Program, Faculty of Agriculture

Afifuddin Latif Adiredjo, Brawijaya University

Department of Plant Science, Agroecotechnology Study Program, Faculty of Agriculture

Lita Soetopo, Brawijaya University

Department of Plant Science, Agroecotechnology Study Program, Faculty of Agriculture

References

Aisyah, S.I., Aswidinnoor, H., Saefuddin, A., Marwoto, B., & Sastrosumarjo, S. (2009). Induksi mutasi pada stek pucuk anyelir (Dianthus caryophyllus Linn.) melalui iradiasi sinar gamma. Jurnal Agronomi Indonesia, 37(1), 62–70.

Al-Enezi, N.A., Al-Bahrany, A.M., & Al-Khayri, J.M. (2012). Effect of X-irradiation on date palm seed germination and seedling growth. Emirates Journal of Food and Agriculture, 24(5), 415–424.

Alikamanoglu, S., Yaycili, O., & Sen, A. (2011). Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biological Trace Element Research, 141(1–3), 283–293. https://doi.org/10.1007/s12011-010-8709-y

Anshori, Y.R., Aisyah, S.I., & Darusman, L.K. (2014). Induksi mutasi fisik dengan iradiasi sinar gamma pada kunyit (Curcuma domestica Val.). Jurnal Hortikultura Indonesia, 5(2), 84–94. https://doi.org/10.29244/jhi.5.2.84-94

Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1

Azizah, N. (2015). Penentuan Lethal Dose 50 (LD₅₀) Iradiasi Sinar Gamma pada Beberapa Kultivar Heliconia spp. [Undergraduated Thesis]. Institut Pertanian Bogor. http://repository.ipb.ac.id/handle/123456789/74611

Balcerowicz, M., & Hoecker, U. (2014). Auxin - a novel regulator of stomata differentiation. Trends in Plant Science, 19(12), 747–749. https://doi.org/10.1016/j.tplants.2014.10.006

BPS (Badan Pusat Statistika). (2020). Garlic production in Indonesia. Website: Badan Pusat Statistik Indonesia

Harsanti, L., & Yulidar. (2015). Pengaruh iradiasi sinar gamma terhadap pertumbuhan awal tanaman kedelai (Glycine max (L.) Merrill) varietas Denna 1. Prosiding Pertemuan dan Presentasi Ilmiah – Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir, 59–63.

Kebeish, R., Deef, H.E., & El-Bialy, N. (2015). Effect of gamma radiation on growth, oxidative stress, antioxidant system, and alliin producing gene transcripts in Allium sativum. International Journal of Research Studies in Biosciences, 3(3), 161–174.

Kim, J.H., Lee, M.H., Moon, Y.R., Kim, J.S., Wi, S.G., Kim, T.H., & Chung, B.Y. (2009). Characterization of metabolic disturbances closely linked to the delayed senescence of Arabidopsis leaves after γ irradiation. Environmental and Experimental Botany, 67(2), 363–371. https://doi.org/10.1016/j.envexpbot.2009.07.001

Kurniajati, W.S. (2017). Perakitan keragaman bawang merah (Allium cepa L. kelompok Aggregatum) dengan induksi mutasi sinar gamma. [Undergraduated Thesis]. Institut Pertanian Bogor

Meliala, J.H.S., Basuki, N., & Seogianto, A. (2016). Pengaruh iradiasi sinar gamma terhadap perubahan fenotipik tanaman padi gogo (Oryza sativa L.). Jurnal Produksi Tanaman, 4(7), 585–594.

Moharrami, M., Vadadi, S., & Ebrahimi, M.A. (2015). Effect of various levels of gamma irradiation on some characteristics of rose seedling. International Journal of Sciences: Basic and Applied Research, 9(9), 1460–1464.

Mubarok, S., Suminar, E., & Murgayanti. (2011). Uji efektivitas sinar gama terhadap karakter pertumbuhan sedap malam. Jurnal Agrivigor, 11(1), 25–33.

Nurhasanah, A. (2019). Pengaruh radiasi sinar gamma terhadap pertumbuhan dua varietas lokal bawang putih (Allium sativum L.) [Undergraduated Thesis]. Universitas Brawijaya.

Pangesti, M.H., & Ratnawati, R. (2022). Pengaruh iridiasi sinar Gamma Co-60 terhadap karakteristik morfologis dan tanaman marigold (Tagetes erecta L.) Kingdom: The Journal of Biological Studies, 8(2), 94-108.

Parry, M.A.J., Madgwick, P.J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., Rakszegi, M., Hamada, W., Al-Yassin, A., Ouabbou, H., Labhilili, M., & Phillips, A.L. (2009). Mutation discovery for crop improvement. Journal of Experimental Botany, 60(10), 2817–2825. https://doi.org/10.1093/jxb/erp189

Payadnya, I.P.A.A., & Jayantika, I.G.A.N.T. (2018). Panduan penelitian eksperimen beserta analisis statistik dengan SPSS. Yogyakarta, Indonesia: Deepublish.

Qosim, W.A. (2006). Studies on gamma ray irradiation of mangosteen nodular callus for improvement genetical and morphological variability of the regenerants [PhD Dissertation]. Institut Pertanian Bogor.

Riviello-Flores, M.d.I.L., Cadena-Iñiguez, J., Ruiz-Posadas, L.d.M., Arévalo-Galarza, M.d.L., Castillo-Juárez, I., Soto Hernández, M., & Castillo-Martínez, C.R. (2022). Use of gamma radiation for the genetic improvement of underutilized plant varieties. Plants, 11(9), 1161. https://doi.org/10.3390/plants11091161

Rosmala, A., Khumaida, N., & Sukma, D. (2016). Alteration of leaf anatomy of handeuleum (Graptophyllum pictum L. Griff) due to gamma irradiation. HAYATI Journal of Biosciences, 23(3), 138–142. https://doi.org/10.1016/j.hjb.2016.12.003

Silveira, G., Moliterno, E., Ribeiro, G., Costa, P.M.A., Woyann, L.G., Tessmann, E.W., Oliveira, A.C., & Cruz, C.D. (2014). Increasing genetic variability in black oats using gamma irradiation. Genetics and Molecular Research, 13(4), 10332–10340. https://doi.org/10.4238/2014.December.4.28

Silveira, S.F.d.S., Oliveira, D.C.S., Maltzhan, L.E., Corazza, T., Oliveira, V.F.d., Stulp, C., Carbonari, H.P., Rother, V., Haverroth, M.C., Gutkoski, L.C., Maia, L.C.d., & Oliveira, A.C.d. (2020). Associations between agronomic performance and grain chemical traits in oat. Communications in Plant Sciences, 10, 001–007. https://doi.org/10.26814/cps2020001

Syukur, M., & Sastrosumarjo, S. (Eds.). (2013). Sitogenetika tanaman. IPB Press.

Syukur, M., Sujiprihati, S., & Yuniarti, R. (2015). Teknik Pemuliaan Tanaman. Penebar Swadaya, Jakarta.

Ulukapi, K., & Nasircilar, A.G. (2015). Developments of gamma ray application on mutation breeding studies in recent years. Proceedings of the International Conference on Advances in Agricultural, Biological & Environmental Sciences, 31–34. https://doi.org/10.15242/IICBE.C0715044

Wi, S.G., Chung, B.Y., Kim, J.S., Kim, J.H., Baek, M.H., Lee, J.W., & Kim, Y.S. (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. Micron, 38(6), 553–564. https://doi.org/10.1016/j.micron.2006.11.002

Winarni, U., Dinarti, D., & Aisyah, S.I. (2022). Evaluasi metabolomik mutan putatif bawang putih (MV3) hasil iradiasi gamma LD₅₀. Jurnal Agronomi Indonesia, 50(1), 49–56. https://doi.org/10.24831/jai.v50i1.38086

Yelni, G., Syarif, Z., Kasim, M., & Hayati, P.K.D. (2019). Meningkatkan keragaman genetik bawang putih (Allium sativum L.) melalui mutasi iradiasi gamma. Jurnal Sains Agro, 4(2), 1–13.

Zanzibar, M., & Witjaksono, W. (2011). Pengaruh penuaan dan iradiasi benih dengan sinar gamma (⁶⁰Co) terhadap pertumbuhan bibit suren (Toona sureni Blume Merr). Jurnal Penelitian Hutan Tanaman, 8(2), 89–96.

Zhang, L., Zheng, F., Qi, W., Wang, T., Ma, L., Qiu, Z., & Li, J. (2016). Irradiation with low-dose gamma ray enhances tolerance to heat stress in Arabidopsis seedlings. Ecotoxicology and Environmental Safety, 128, 181–188. https://doi.org/10.1016/j.ecoenv.2016.02.025

Downloads

Published

2026-02-06

How to Cite

Novitasari, A., Adiredjo, A. L., & Soetopo, L. (2026). Genetic Variability of Lumbu Kuning and Lumbu Hijau Garlic Varieties Induced by ⁶⁰Co Gamma Ray Irradiation. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 15(1), 233–242. https://doi.org/10.23960/jtepl.v15i1.233-242