Design and Performance Evaluation of an IoT-Based Automatic Airflow Control System for a PV/T Solar Dryer with Silica Gel Adsorption Heat Storage

Authors

  • Putri Arsyafdini Oktavionry IPB University
  • Leopold Oscar Nelwan IPB University
  • I Dewa Made Subrata IPB University

DOI:

https://doi.org/10.23960/jtepl.v15i1.153-163
Abstract View: 26

Keywords:

Adsorption, Drying, Energy, Photovoltaic-collector

Abstract

Solar energy is one of the most promising renewable energy sources, yet solar drying operating costs often remain prohibitive for small-scale farming. This research aims to design and evaluate the performance of an automated air flow control system for a PV/T collector integrated with an adsorption channel. The methodology focuses on developing a real-time monitoring and control logic based on environmental parameters. The system utilizes a microcontroller-based unit for data acquisition of temperature and humidity, coupled with a high-torque motor actuation system to regulate valve positioning between the collector and the desiccant unit. Results indicate that the control system manages air distribution effectively across a temperature control range of 40 °C to 4 3°C. The system demonstrated high responsiveness with a mechanical actuation speed of 3 seconds for a full 90-degree valve rotation. During the adsorption phase, the silica gel's moisture content rose from 23.57% to 27.38%. Furthermore, the silica gel adsorption unit contributed to thermal stability by maintaining a temperature gradient of 3-7 °C between the plenum and the environment, effectively recycling adsorption heat to enhance the drying air temperature even during low solar radiation.

Downloads

Download data is not yet available.

Author Biographies

Putri Arsyafdini Oktavionry, IPB University

Department of Mechanical and Biosystems Engineering, Faculty of Agricultural Technology

Leopold Oscar Nelwan, IPB University

Department of Mechanical and Biosystems Engineering, Faculty of Agricultural Technology

I Dewa Made Subrata, IPB University

Department of Mechanical and Biosystems Engineering, Faculty of Agricultural Technology

References

Ayaz, H., Chinnasamy, V., Yong, J., & Cho, H. (2021). Review of technologies and recent advances in low-temperature sorption thermal storage systems. Energies, 14(19), 1–36. https://doi.org/10.3390/en14196052

Ayisi, E.N., & Fraňa, K. (2020). The design and test for degradation of energy density of a silica gel-based energy storage system using low grade heat for desorption phase. Energies, 13(17), 4513. https://doi.org/10.3390/en13174513

Gupta, A., Das, B., & Biswas, A. (2021). Performance analysis of stand-alone solar photovoltaic thermal dryer for drying of green chili in hot-humid weather conditions of North-East India. Journal of Food Process Engineering, 44(6), 13701. https://doi.org/10.1111/jfpe.13701

Hraiech, I., Zallama, B., Belkhiria, S., Zili-Ghedira, L., Maatki, C., Hassen, W., Hadrich, B., & Kolsi, L. (2025). Experimental characterization of silica gel adsorption and desorption isotherms under varying temperature and relative humidity in a fixed bed reactor. Scientific Reports, 15(1), 29041. https://doi.org/10.1038/s41598-025-14677-7

Jimoh, K.A., Hashim, N., Shamsudin, R., Man, H.C., Jahari, M., & Onwude, D.I. (2023). Recent advances in the drying process of grains. Food Engineering Reviews, 15(3), 548–576. https://doi.org/10.1007/s12393-023-09333-7

Kazem, H.A., Al-Waeli, A.H.A., Chaichan, M.T., Sopian, K., Al Busaidi, A.S., & Gholami, A. (2023). Photovoltaic-thermal systems applications as dryer for agriculture sector: A review. Case Studies in Thermal Engineering, 47, 103047. https://doi.org/10.1016/j.csite.2023.103047

Khalil, F.I., Nelwan, L.O., & Subrata, I.D.M. (2016). Desain sistem kendali untuk pengering gabah dengan kolektor surya dan penyimpan panas. Jurnal Keteknikan Pertanian, 4(1), 87–96.

Kong, D., Wang, Y., Li, M., Keovisar, V., Huang, M., & Yu, Q. (2020). Experimental study of solar photovoltaic/thermal (PV/T) air collector drying performance. Solar Energy, 208, 978–989. https://doi.org/10.1016/j.solener.2020.08.067

Ludin, N.A., Mustafa, N.I., Hanafiah, M.M., Ibrahim, M.A., Teridi, M.A.M., Sepeai, S., Zaharim, A., & Sopian, K. (2018). Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renewable and Sustainable Energy Reviews, 96, 11–28. https://doi.org/10.1016/j.rser.2018.07.048

Mitran, R.-A., Ionițǎ, S., Lincu, D., Berger, D., & Matei, C. (2021). A review of composite phase change materials based on porous silica nanomaterials for latent heat storage applications. Molecules, 26(1), 241. https://doi.org/10.3390/molecules26010241

Musa, A.A., Nciri, R., & Nasri, F. (2025). Equilibrium moisture effects in silica gel adsorption/desorption. Engineering, Technology and Applied Science Research, 15(1), 19282–19287. https://doi.org/10.48084/etasr.9207

Nelwan, L.O., Subrata, I.D.M., Yulianto, M., & Suharta, N. (2024). Pengembangan model sistem pengering surya mandiri dengan metode fotovoltaik-termal (PV/T) dan penyimpanan panas adsorpsi untuk pengeringan gabah (Laporan penelitian, Program Riset Fundamental). Direktorat Riset dan Inovasi, Institut Pertanian Bogor.

Putra, G.M.D., Lailatun, H.I., Sabani, R., & Setiawati, D.A. (2019). Sistem otomasi photovoltaic pada pembangkit listrik tenaga surya (PLTS) berbasis mikrokontroler Arduino skala lab. Jurnal Teknik Pertanian Lampung, 8(2), 130–138. https://doi.org/10.23960/jtep-l.v8i2.130-138

Putri, R.E., Arsyafdini, P.O., Putri, I., Arlius, F., & Hasan, A. (2024). Smart tower farming system based on the Internet of Things in greenhouse system. Tikrit Journal for Agricultural Sciences, 24(3), 228–243. https://doi.org/10.25130/tjas.24.3.18

Rambhad, K.S., Walke, P.V., Kalbande, V.P., Kumbhalkar, M.A., Khond, V.W., Nandanwar, Y., Mohan, M., & Jibhakate, R. (2023). Experimental investigation of desiccant dehumidification with four different combinations of silica gel desiccant wheel on indoor air quality. SN Applied Sciences, 5(11), 277. https://doi.org/10.1007/s42452-023-05505-6

Rustami, E., Adiati, R.F., Zuhri, M., & Setiawan, A.A. (2022). Uji karakteristik sensor suhu dan kelembaban multi-channel menggunakan platform Internet of Things (IoT). Berkala Fisika, 25(2), 45–52.

Sadaka, S. (2022). Impact of grain layer thickness on rough rice drying kinetics parameters. Case Studies in Thermal Engineering, 35, 102026. https://doi.org/10.1016/j.csite.2022.102026

Samykano, M. (2023). Hybrid photovoltaic thermal systems: Present and future feasibilities for industrial and building applications. Buildings, 13(8), 1950. https://doi.org/10.3390/buildings13081950

Santika, W.G., Anisuzzaman, M., Bahri, P.A., Shafiullah, G.M., Rupf, G.V., & Urmee, T. (2019). From goals to joules: A quantitative approach of interlinkages between energy and the Sustainable Development Goals. Energy Research & Social Science, 50, 201–214. https://doi.org/10.1016/j.erss.2018.11.016

Siagian, P., Matondang, A.A., Simanjuntak, A.V.H., Kusuma, B.S., Panjaitan, J., & Simanjuntak, A.V.H. (2025). Experimental of environmental development using continuous solar dryer with solid dehumidification for coffee drying. Journal of Geoscience, Engineering, Environment, and Technology, 10(2), 162–169. https://doi.org/10.25299/jgeet.2025.10.02.21492

Tonadi, E., Niharman, & Wiranto, B. (2024). Performance analysis of solar photovoltaic thermal (PV/T) dryer for drying moringa leaf. JTTM: Jurnal Terapan Teknik Mesin, 5(1), 90-96. https://doi.org/10.37373/jttm.v5i1.777

Yang, T., Zheng, X., Xiao, H., Shan, C., Yao, X., & Li, Y. (2023). Drying temperature precision control system based on improved neural network PID controller and variable-temperature drying experiment of cantaloupe slices. Plants, 12(12), 2257. https://doi.org/10.3390/plants12122257

Yuliasdini, N.A., Putri, S.U., Makaminan, T.A., Yuliati, S., & Fadarina. (2020). Efisiensi termal alat pengering tipe tray dryer untuk pengeringan silika gel berbasis ampas tebu. Prosiding Seminar Mahasiswa Teknik Kimia, 1(1), 29–33.

Downloads

Published

2026-02-06

How to Cite

Oktavionry, P. A., Nelwan, L. O. ., & Subrata, I. D. M. (2026). Design and Performance Evaluation of an IoT-Based Automatic Airflow Control System for a PV/T Solar Dryer with Silica Gel Adsorption Heat Storage. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 15(1), 153–163. https://doi.org/10.23960/jtepl.v15i1.153-163