Theoretical Study of Shell-and-Tube Heat Exchanger Effectiveness on Batch Drying of Sawdust Utilizing Waste Heat from Organic Rankine Cycle

Authors

DOI:

https://doi.org/10.23960/jtep-l.v14i1.71-82
Abstract View: 253

Abstract

Steam power plant has flue gas that are generally discharged into environment. The exhaust gases from internal combustion contain thermal energy that can be utilized for drying processes, which can enhance the energy efficiency of the Organic Rankine Cycle (ORC) system. This research focuses on the use of waste heat for drying applications through heat exchangers. The objective of this work is to study the performance of shell-and-tube type heat exchanger in utilizing waste heat from an ORC system for drying applications. Experimental data was obtained by varying the air velocity of the dryer to validate the numerical simulations. The results showed that increasing air velocity in the heat exchanger caused a decrease in heat exchanger outlet temperature, water vapor mass, and heat exchanger effectiveness. The decrease in these parameters reduces heat transfer required for drying, so water mass rate of material decreases and drying time gets longer. Validation of simulation and experiment data for outlet heat exchanger temperature was determined by MAPE value of less than 20% which means good prediction model.

 

Keywords: Air velocity, Drying, Effectiveness heat exchanger, Exhaust gas, Heat exchanger.

Downloads

Download data is not yet available.

Author Biographies

M. Arief Yahdi, IPB University

Department of Mechanical and Biosystem Engineering Faculty of Engineering and Technology IPB University

Edy Hartulistiyoso, IPB University

Department of Mechanical and Biosystem Engineering Faculty of Engineering and Technology IPB University

Muhamad Yulianto, IPB University

Department of Mechanical and Biosystem Engineering Faculty of Engineering and Technology IPB University

References

Agustina, D., Dhewaji, R.D., & Martin, A. (2020). Pemanfaatan panas kondenser pada pengering beku vakum. Jurnal Energi dan Manufaktur, 13(1), 32-36. https://doi.org/10.24843/JEM.2020.v13.i01.p06

Ansar, A., Sukmawaty, S., Murad, M., Ulfa, M., & Azis, A.D. (2022). Using of exhaust gas heat from a condenser to increase the vacuum freeze-drying rate. Results in Engineering, 13, 100317. https://doi.org/10.1016/j.rineng.2021.100317

Azwinur, A., & Zulkifli, Z. (2019). Kaji eksperimental pengaruh baffle pada alat Penukar panas aliran searah dalam upaya optimasi sistem pengering. Sintek Jurnal: Jurnal Ilmiah Teknik Mesin, 13(1), 8-14. https://doi.org/10.24853/sintek.13.1.8-14

Çengel, Y. (1997). Introduction to Thermodynamic and Heat Transfer. McGraw Hill.

Dubey, M., Aroraa, A., & Chandrab, H. (2015). Review on recovery and utilization of waste heat in internal combustion engine. International Journal of Advanced Engineering Research and Studies, 4(2), 199-205.

Farak, K. (1991). Prinsip-Prinsip Perpindahan Panas/P-96/P-00. Erlangga.

Ghiasi, M., Ibrahim, M.N., Basha, R.K., & Talib, R.A. (2016). Energy usage and drying capacity of flat-bed and inclined-bed dryers for rough rice drying. International Food Research Journal, suppl. SUPPLEMENTARY ISSUE; Selangor, 23(2016), 23-29.

Hassan, A.M., Alwan, A.A., & Hamzah, H.K. (2023). Numerical study of fan coil heat exchanger with copper-foam. International Journal of Fluid Machinery and Systems, 16(1), 73-88. https://doi.org/10.5293/IJFMS.2023.16.1.073

Holman, J.P. (2010). Heat Transfer. 10th edition. McGraw-Hill Education.

Incropera, F.P., & DeWitt, D.P. (1981). Fundamentals of Heat and Mass Transfer. 4th edition. John well & sons.

Isworo, R., & Nuraisyah, A. (2021). Karakterisasi fisikokimia ikan bage (makanan tradisional Sumbawa) menggunakan oven pengering. Jurnal Tambora, 5(1), 34-39. https://doi.org/10.36761/jt.v5i1.996

Jadhao, J.S., & Thombare, D.G. (2013). Review on exhaust gas heat recovery for I.C. engine. International Journal of Engineering and Innovative Technology, 2(12), 93-100.

Kusuma, I.G.N.S., Putra, I.N.K.P., & Darmayanti, L.P.T. (2019). Pengaruh suhu pengeringan terhadap aktivitas antioksidan the herbal kulit kakao (Theobroma cacao L.). Jurnal Ilmu dan Teknologi Pangan, 8(1), 85-93. https://doi.org/10.24843/itepa.2019.v08.i01.p10

Lestari, N., & Samsuar, S. (2023). Kinetika pengeringan kunyit menggunakan cabinet dryer yang memanfaatkan panas terbuang kondensor pendingin udara. Gorontalo Agriculture Technologi Journal, 6(1), 1-13. https://doi.org/10.32662/gatj.v0i0.2474

Manfaati, R., Baskoro, H., & Rifai, M.M. (2019). Pengaruh waktu dan suhu terhadap proses pengeringan bawang merah menggunakan tray dryer. Jurnal Fluida, 12(2), 43-49. https://doi.org/10.35313/fluida.v12i2.1596

Maricar, M.A. (2019). Analisa perbandingan nilai akurasi moving average dan exponential smoothing untuk sistem peramalan pendapatan pada perusahaan XYZ. Jurnal Sistem dan Informatika, 13(2), 36-45.

Mendivelso, K.Y.R., Fonsecal, M.T.V., Vasquesz, J.D.H., Samper, O.M.M., Torres, P.J.P.T., & Campuzano, M.J. (2023). Thermal and hydrodynamic performance analysis of a shell and tube heat exchanger using the AHP multicriteria method. International Journal of Technology, 14(3), 522-535. https://doi.org/10.14716/ijtech.v14i3.6000

Nabillah, I., & Ranggadara, I. (2020). Mean absolute percentage error untuk evaluasi hasil prediksi komoditas laut. Journal of Information System, 5(2), 250-255. http://dx.doi.org/10.33633/joins.v5i2.3900

Nasruddin, N., Alhamid, N.I., Kosasih, E.A., & Yulianto, M. (2011). Effects of freeze vacuum drying and heating from condenser's heat loss on drying rate and microstructure of aloe vera. Research Journal of Applied Sciences, 6(5), 335-343.

Ni, J. (2023). Research on the application of heat engine efficiency in reducing energy consumption. Theoretical and Natural Science, 9(1), 248-254. https://doi.org/10.54254/2753-8818/9/20240768

Oyadepo, S.O., & Fakeye, A. (2020). Waste heat recovery technologies: Pathway to sustainable energy development. Journal of Thermal Engineering, 7(1), 324-348. https://doi.org/10.18186/thermal.850796

Permana, D.I., & Mahardika, M.A. (2019). Pemanfaatan panas buang flue gas PLTU dengan aplikasi siklus rankine organik. Barometer: Jurnal Ilmu dan Aplikasi Teknik, 4(2), 197-202. https://doi.org/10.35261/barometer.v4i2.1851

Prabaswara, R.J., Rulianah, S., Sindhuwati, C., Raharjo, R. (2021). Evaluasi pressure drop heat exchanger-03 pada crude distillation unit PPSDM Migas Cepu. Distilat: Jurnal Teknologi Separasi, 7(2), 505-513

Raghulnath, D., Saravan, K., Lakshmana, P., Kuma, M.R., & Hariharan, K.B. (2021). Performance analysis of heat transfer parameters in shell and tube heat exchanger with circumferential turbulator. Materials Today: Proceedings, 37(2), 3721-3724. https://doi.org/10.1016/j.matpr.2020.10.189.

Robiyanyusra, R., Gani, U.A., & Taufiqurrahman, M. (2021). Analisis efektivitas laju perpindahan panas alat penukar kalor tipe double pipe. Jurnal Teknologi Rekayasa Teknik Mesin, 2(2), 97-104.

Septian, B., Aziz, A., & Rey, P.D. (2021). Desain dan rancang bangun alat penukar kalor (heat exchanger) jenis shell dan tube. Jurnal Keilmuan Teknik Mesin dan Teknik Industri, 3(1), 53-60.

Shabab, A., & Wahyuningsi, A. (2023). Evaluasi kinerja heat exchanger - 003 di Pusat Pengembangan Sumber Daya Manusia Minyak dan Gas Bumi (PPSDM Migas Cepu). Journal of Innovation Research and Knowledge, 2(8), 3229-3242. https://doi.org/10.53625/jirk.v2i8.4742

Soegijarto, R.A., & Arsana, M. (2021). Pengaruh variasi temperatur fluida masuk terhadap efektivitas heat exchanger shell and tube dengan menggunakan nanofluida TiO2. Jurnal Teknik Mesin, 9(02), 131-136.

Suntoro, D., Nafis, S., & Al-kindi, H. (2018). Uji performansi prototipe alat pengering kopra memanfaatkan panas buang PLTU berbahan bakar arang tempurung kelapa. Jurnal Keteknikan Pertanian, 6(3), 263-270. https://doi.org/10.19028/jtep.06.3.263-270

Susana, I.G.B., & Alit, I.B. (2020). Pengering berpenukar kalor dengan sumber energi sekam padi. Machine: Jurnal Teknik Mesin, 6(2), 1-5. https://doi.org/10.33019/jm.v6i2.1506

Syahrul, S., Romdhani, R., & Mirmanto, M. (2016). Pengaruh variasi airspeed dan massa bahan gabah terhadap laju pengeringan pada alat fluidized bed. Dinamika Teknik Mesin: Jurnal Keilmuan dan Terapan Teknik Mesin, 6(2), 1-14. https://doi.org/10.29303/dtm.v6i2.15

Syamsuri, S., Lillahulhaq, Z., & Akhfaruhal, A. (2023). Pengaruh variasi laju aliran fluida terhadap kapasitas pengeringan pakaian (tipe pengering lemari). Turbo: Jurnal Program Studi Teknik Mesin, 12(1), 128-133. http://dx.doi.org/10.24127/trb.v12i1.2538

Wirawan, I.M.A., Wijaksana, H., & Astawa, K. (2016). Analisa pengaruh variasi laju aliran udara terhadap efektivitas heat exchanger memanfaatkan energi panas LPG. Jurnal ilmiah Teknik Desain Mekanika, 10(10), 1-5.

Yulianto, M., Hartulistiyoso, E., Nelwan, L.O., Agustina, S.E., & Gupta, C. (2022). Thermal characteristics of coconut shells as boiler fuel. International Journal of Renewable Energy Development, 12 (2), 227-234. https://doi.org/10.14710/ijred.2023.48349

Yulianto, M., Nelwan, L.O., & Gupta, C. (2017). Desain dan Uji Kinerja Heat Exchanger Tipe Shell and Tube dengan Panas dari Tungku Berbahan Bakar Tempurung Kelapa. [Undergraduated Thesis], IPB.

Zaidin, Z.B., Ali, J.B.N., & Eswanto. (2016). Pemilihan kapasitas dan temperatur udara alat penukar kalor shell helical coil multi tube untuk kebutuhan pengering gabah tipe rotari dengan memanfaatkan thermal gas buang mesin diesel. Jurnal Mekanika, 15(2), 1-7.

Downloads

Published

2025-01-20

How to Cite

Yahdi, M. A., Hartulistiyoso, E., & Yulianto, M. (2025). Theoretical Study of Shell-and-Tube Heat Exchanger Effectiveness on Batch Drying of Sawdust Utilizing Waste Heat from Organic Rankine Cycle. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(1), 71–82. https://doi.org/10.23960/jtep-l.v14i1.71-82