Theoretical Study of Shell-and-Tube Heat Exchanger Effectiveness on Batch Drying of Sawdust Utilizing Waste Heat from Organic Rankine Cycle
DOI:
https://doi.org/10.23960/jtep-l.v14i1.71-82
Abstract View: 253
Abstract
Steam power plant has flue gas that are generally discharged into environment. The exhaust gases from internal combustion contain thermal energy that can be utilized for drying processes, which can enhance the energy efficiency of the Organic Rankine Cycle (ORC) system. This research focuses on the use of waste heat for drying applications through heat exchangers. The objective of this work is to study the performance of shell-and-tube type heat exchanger in utilizing waste heat from an ORC system for drying applications. Experimental data was obtained by varying the air velocity of the dryer to validate the numerical simulations. The results showed that increasing air velocity in the heat exchanger caused a decrease in heat exchanger outlet temperature, water vapor mass, and heat exchanger effectiveness. The decrease in these parameters reduces heat transfer required for drying, so water mass rate of material decreases and drying time gets longer. Validation of simulation and experiment data for outlet heat exchanger temperature was determined by MAPE value of less than 20% which means good prediction model.
Keywords: Air velocity, Drying, Effectiveness heat exchanger, Exhaust gas, Heat exchanger.
Downloads
References
Agustina, D., Dhewaji, R.D., & Martin, A. (2020). Pemanfaatan panas kondenser pada pengering beku vakum. Jurnal Energi dan Manufaktur, 13(1), 32-36. https://doi.org/10.24843/JEM.2020.v13.i01.p06
Ansar, A., Sukmawaty, S., Murad, M., Ulfa, M., & Azis, A.D. (2022). Using of exhaust gas heat from a condenser to increase the vacuum freeze-drying rate. Results in Engineering, 13, 100317. https://doi.org/10.1016/j.rineng.2021.100317
Azwinur, A., & Zulkifli, Z. (2019). Kaji eksperimental pengaruh baffle pada alat Penukar panas aliran searah dalam upaya optimasi sistem pengering. Sintek Jurnal: Jurnal Ilmiah Teknik Mesin, 13(1), 8-14. https://doi.org/10.24853/sintek.13.1.8-14
Çengel, Y. (1997). Introduction to Thermodynamic and Heat Transfer. McGraw Hill.
Dubey, M., Aroraa, A., & Chandrab, H. (2015). Review on recovery and utilization of waste heat in internal combustion engine. International Journal of Advanced Engineering Research and Studies, 4(2), 199-205.
Farak, K. (1991). Prinsip-Prinsip Perpindahan Panas/P-96/P-00. Erlangga.
Ghiasi, M., Ibrahim, M.N., Basha, R.K., & Talib, R.A. (2016). Energy usage and drying capacity of flat-bed and inclined-bed dryers for rough rice drying. International Food Research Journal, suppl. SUPPLEMENTARY ISSUE; Selangor, 23(2016), 23-29.
Hassan, A.M., Alwan, A.A., & Hamzah, H.K. (2023). Numerical study of fan coil heat exchanger with copper-foam. International Journal of Fluid Machinery and Systems, 16(1), 73-88. https://doi.org/10.5293/IJFMS.2023.16.1.073
Holman, J.P. (2010). Heat Transfer. 10th edition. McGraw-Hill Education.
Incropera, F.P., & DeWitt, D.P. (1981). Fundamentals of Heat and Mass Transfer. 4th edition. John well & sons.
Isworo, R., & Nuraisyah, A. (2021). Karakterisasi fisikokimia ikan bage (makanan tradisional Sumbawa) menggunakan oven pengering. Jurnal Tambora, 5(1), 34-39. https://doi.org/10.36761/jt.v5i1.996
Jadhao, J.S., & Thombare, D.G. (2013). Review on exhaust gas heat recovery for I.C. engine. International Journal of Engineering and Innovative Technology, 2(12), 93-100.
Kusuma, I.G.N.S., Putra, I.N.K.P., & Darmayanti, L.P.T. (2019). Pengaruh suhu pengeringan terhadap aktivitas antioksidan the herbal kulit kakao (Theobroma cacao L.). Jurnal Ilmu dan Teknologi Pangan, 8(1), 85-93. https://doi.org/10.24843/itepa.2019.v08.i01.p10
Lestari, N., & Samsuar, S. (2023). Kinetika pengeringan kunyit menggunakan cabinet dryer yang memanfaatkan panas terbuang kondensor pendingin udara. Gorontalo Agriculture Technologi Journal, 6(1), 1-13. https://doi.org/10.32662/gatj.v0i0.2474
Manfaati, R., Baskoro, H., & Rifai, M.M. (2019). Pengaruh waktu dan suhu terhadap proses pengeringan bawang merah menggunakan tray dryer. Jurnal Fluida, 12(2), 43-49. https://doi.org/10.35313/fluida.v12i2.1596
Maricar, M.A. (2019). Analisa perbandingan nilai akurasi moving average dan exponential smoothing untuk sistem peramalan pendapatan pada perusahaan XYZ. Jurnal Sistem dan Informatika, 13(2), 36-45.
Mendivelso, K.Y.R., Fonsecal, M.T.V., Vasquesz, J.D.H., Samper, O.M.M., Torres, P.J.P.T., & Campuzano, M.J. (2023). Thermal and hydrodynamic performance analysis of a shell and tube heat exchanger using the AHP multicriteria method. International Journal of Technology, 14(3), 522-535. https://doi.org/10.14716/ijtech.v14i3.6000
Nabillah, I., & Ranggadara, I. (2020). Mean absolute percentage error untuk evaluasi hasil prediksi komoditas laut. Journal of Information System, 5(2), 250-255. http://dx.doi.org/10.33633/joins.v5i2.3900
Nasruddin, N., Alhamid, N.I., Kosasih, E.A., & Yulianto, M. (2011). Effects of freeze vacuum drying and heating from condenser's heat loss on drying rate and microstructure of aloe vera. Research Journal of Applied Sciences, 6(5), 335-343.
Ni, J. (2023). Research on the application of heat engine efficiency in reducing energy consumption. Theoretical and Natural Science, 9(1), 248-254. https://doi.org/10.54254/2753-8818/9/20240768
Oyadepo, S.O., & Fakeye, A. (2020). Waste heat recovery technologies: Pathway to sustainable energy development. Journal of Thermal Engineering, 7(1), 324-348. https://doi.org/10.18186/thermal.850796
Permana, D.I., & Mahardika, M.A. (2019). Pemanfaatan panas buang flue gas PLTU dengan aplikasi siklus rankine organik. Barometer: Jurnal Ilmu dan Aplikasi Teknik, 4(2), 197-202. https://doi.org/10.35261/barometer.v4i2.1851
Prabaswara, R.J., Rulianah, S., Sindhuwati, C., Raharjo, R. (2021). Evaluasi pressure drop heat exchanger-03 pada crude distillation unit PPSDM Migas Cepu. Distilat: Jurnal Teknologi Separasi, 7(2), 505-513
Raghulnath, D., Saravan, K., Lakshmana, P., Kuma, M.R., & Hariharan, K.B. (2021). Performance analysis of heat transfer parameters in shell and tube heat exchanger with circumferential turbulator. Materials Today: Proceedings, 37(2), 3721-3724. https://doi.org/10.1016/j.matpr.2020.10.189.
Robiyanyusra, R., Gani, U.A., & Taufiqurrahman, M. (2021). Analisis efektivitas laju perpindahan panas alat penukar kalor tipe double pipe. Jurnal Teknologi Rekayasa Teknik Mesin, 2(2), 97-104.
Septian, B., Aziz, A., & Rey, P.D. (2021). Desain dan rancang bangun alat penukar kalor (heat exchanger) jenis shell dan tube. Jurnal Keilmuan Teknik Mesin dan Teknik Industri, 3(1), 53-60.
Shabab, A., & Wahyuningsi, A. (2023). Evaluasi kinerja heat exchanger - 003 di Pusat Pengembangan Sumber Daya Manusia Minyak dan Gas Bumi (PPSDM Migas Cepu). Journal of Innovation Research and Knowledge, 2(8), 3229-3242. https://doi.org/10.53625/jirk.v2i8.4742
Soegijarto, R.A., & Arsana, M. (2021). Pengaruh variasi temperatur fluida masuk terhadap efektivitas heat exchanger shell and tube dengan menggunakan nanofluida TiO2. Jurnal Teknik Mesin, 9(02), 131-136.
Suntoro, D., Nafis, S., & Al-kindi, H. (2018). Uji performansi prototipe alat pengering kopra memanfaatkan panas buang PLTU berbahan bakar arang tempurung kelapa. Jurnal Keteknikan Pertanian, 6(3), 263-270. https://doi.org/10.19028/jtep.06.3.263-270
Susana, I.G.B., & Alit, I.B. (2020). Pengering berpenukar kalor dengan sumber energi sekam padi. Machine: Jurnal Teknik Mesin, 6(2), 1-5. https://doi.org/10.33019/jm.v6i2.1506
Syahrul, S., Romdhani, R., & Mirmanto, M. (2016). Pengaruh variasi airspeed dan massa bahan gabah terhadap laju pengeringan pada alat fluidized bed. Dinamika Teknik Mesin: Jurnal Keilmuan dan Terapan Teknik Mesin, 6(2), 1-14. https://doi.org/10.29303/dtm.v6i2.15
Syamsuri, S., Lillahulhaq, Z., & Akhfaruhal, A. (2023). Pengaruh variasi laju aliran fluida terhadap kapasitas pengeringan pakaian (tipe pengering lemari). Turbo: Jurnal Program Studi Teknik Mesin, 12(1), 128-133. http://dx.doi.org/10.24127/trb.v12i1.2538
Wirawan, I.M.A., Wijaksana, H., & Astawa, K. (2016). Analisa pengaruh variasi laju aliran udara terhadap efektivitas heat exchanger memanfaatkan energi panas LPG. Jurnal ilmiah Teknik Desain Mekanika, 10(10), 1-5.
Yulianto, M., Hartulistiyoso, E., Nelwan, L.O., Agustina, S.E., & Gupta, C. (2022). Thermal characteristics of coconut shells as boiler fuel. International Journal of Renewable Energy Development, 12 (2), 227-234. https://doi.org/10.14710/ijred.2023.48349
Yulianto, M., Nelwan, L.O., & Gupta, C. (2017). Desain dan Uji Kinerja Heat Exchanger Tipe Shell and Tube dengan Panas dari Tungku Berbahan Bakar Tempurung Kelapa. [Undergraduated Thesis], IPB.
Zaidin, Z.B., Ali, J.B.N., & Eswanto. (2016). Pemilihan kapasitas dan temperatur udara alat penukar kalor shell helical coil multi tube untuk kebutuhan pengering gabah tipe rotari dengan memanfaatkan thermal gas buang mesin diesel. Jurnal Mekanika, 15(2), 1-7.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung

JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


