Design and Testing of Stream as a Sterilization Tool for Trichoderma sp. Propagation Media Using a Palm Oil Mill Steam Boiler

Authors

  • Ihsanul Fajri IPB University
  • Edy Hartulistiyoso IPB University
  • Rahayu Widyastuti IPB University

DOI:

https://doi.org/10.23960/jtep-l.v14i2.570-581
Abstract View: 173

Abstract

Trichoderma sp. is a fungus used in oil palm plantations to control basal stem rot disease, which can reduce palm oil production by up to 80%. At PT. Bumitama Gunajaya Agro, the production of this fungus uses an autoclave, which can only produce 51 kg of Trichoderma sp. per day per unit. To meet the high demand for Trichoderma sp., a large-capacity sterilization tool called "stream" is needed for mass production. The optimal performance of the Stream shows that effective sterilization can be achieved in 20 min when the tool is operated for 45 min. The effectiveness of this sterilization time is proven by the Total Plate Count (TPC) test, which shows a bacterial count of 109×103 CFU/g and a fungal count of 35 CFU/g. The Trichoderma sp. product produced through this process has a conidium density of 8×108, 100% conidium viability, and an inhibition power of 54%, all of which exceed the standard values of SNI 8027.3:2014. Based on its production capacity, Stream can achieve production of up to 1 ton per day with quality not significantly different from Trichoderma sp. production using an autoclave.

 

Keywords: Autoclave, Basal stem rot disease, Sterilization, TPC, Trichoderma sp.

Downloads

Download data is not yet available.

Author Biographies

Ihsanul Fajri, IPB University

Department of Mechanical and Biosystem Engineering Faculty of Engineering and Technology IPB University

Edy Hartulistiyoso, IPB University

Department of Mechanical and Biosystem Engineering Faculty of Engineering and Technology IPB University

Rahayu Widyastuti, IPB University

Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University

References

Akter, F., Ahmed, M.G.U., & Alam, M.F. (2019). Trichoderma: A Complete tool box for climate smart agriculture. Madridge Journal of Agriculture and Environmental Sciences, 2(1), 40–43. https://doi.org/10.18689/mjaes-1000107

Anothai, J., & Chairin, T. (2020). Soil physicochemical properties closely associated with fungal enzymes and plant defense enzymes in Ganoderma-infected oil palm orchards. Plant and Soil, 456(1–2), 99–112. https://doi.org/10.1007/s11104-020-04705-y

Barcelos, E., De Almeida Rios, S., Cunha, R.N.V., Lopes, R., Motoike, S.Y., Babiychuk, E., Skirycz, A., & Kushnir, S. (2015). Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science, 6(MAR), 1–16. https://doi.org/10.3389/fpls.2015.00190

BSN (Badan Standardisasi Nasional). (2014). SNI 8027.3.2014 – Agens Pengendali Hayati (APH) - Bagian 3 : Trichoderma spp. Badan Standardisasi Nasional, Jakarta.

Contreras-Cornejo, H.A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiology Ecology, 92(4), fiw036. https://doi.org/10.1093/femsec/fiw036

Haryanto, A. (2015). Perpindahan panas. Innosain, Yogyakarta: 516 p.

Hikmawan, O., Naufa, M., & Simarmata, L.H. (2020). Pemanfaatan cangkang dan serat kelapa sawit sebagai bahan bakar boiler utilization of palm kernel shell and fiber as boiler fuel. Jurnal Riset Industri, 15(29), 18–26.

Ho, C.L., Tan, Y.C., Yeoh, K.A., Lee, W.K., Ghazali, A.K., Yee, W.Y., & Hoh, C.C. (2018). Transcriptional response of oil palm (Elaeis guineensis Jacq.) inoculated simultaneously with both Ganoderma boninense and Trichoderma harzianum. Plant Gene, 13(January), 56–63. https://doi.org/10.1016/j.plgene.2018.01.003

Husen, E., Pratiwi, E., Surono, & Widowati, L.R. (2022). Metode Analisis Biologi Tanah. Balai Penelitian Tanah, Bogor: 394 p.

Jumadi, O., Junda, M., Caronge, M.W., & Syafruddin. (Eds.). (2021). Trichoderma dan Pemanfaatan. Penerbit Jurusan Biologi FMIPA UNM, Makassar: 89 p. http://eprints.unm.ac.id/id/eprint/21426

Kurniasari, S. (2021). Mengenal Agen Hayati Trichoderma sp. Unit Pelaksana Teknis Perlindungan Tanaman Pangan dan Hortikultura Provinsi Kalimantan Barat.

Kurniawan, A.D., & Yulianto, D. (2020). Pemanfaatan limbah serat (fiber) buah kelapa sawit dan plastik daur ulang (polypropylene) sebagai material komposit papan partikel (particle board). Journal of Renewable Energy and Mechanics, 3(02), 60–70. https://doi.org/10.25299/rem.2020.vol3.no02.4884

Moran, M.J., & Shapiro, H.N. (2006). Engineering Thermodynamics. In Mechatronic Systems, Sensors, and Actuators: Fundamentals and Modeling. John Wiley & Sons, Inc.

Musa, H., Nusaibah, S.A., & Khairulmazmi, A. (2018). Assessment on Trichoderma spp. mixture as a potential biocontrol agent of ganoderma boninense infected oil palm seedlings. Journal of Oil Palm Research, 30(3), 403–415. https://doi.org/10.21894/jopr.2018.0035

Narasswati, N., Oktavia, R., Nenci, N., Eryanti, Y., Nugroho, T.T., & Nurulita, Y. (2017). Potensi metabolit sekunder dari Trichoderma sp. LBKURCC22 tanah gambut hutan sekunder sebagai antibiotik. Chimica et Natura Acta, 5(2), 85. https://doi.org/10.24198/cna.v5.n2.14692

Nugroho, A. (2019). Teknologi Agroindustri Kelapa Sawit. Lambung Mangkurat University Press, Banjarmasin: 183 p.

Parinduri, L., & Arfah, M. (2019). Pendekatan energi dalam pengelolaan limbah pabrik kelapa sawit studi kasus PT. Perkebunan Nusantara IV Kebun Adolina. Journal of Electrical Technology, 4(2), 85–92.

Rees, R.W., Flood, J., Hasan, Y., Potter, U., & Cooper, R.M. (2009). Basal stem rot of oil palm (Elaeis guineensis); Mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathology, 58(5), 982–989. https://doi.org/10.1111/j.1365-3059.2009.02100.x

Ruswanto, A. (2017). Mengenal Teknologi Pengolahan Tandan Buah Sawit (TBS) Menjadi Minyak Kelapa Sawit. Instiper, Yogyakarta: 58 p.

Samlikamnoed, P., Anothai, J., & Chairin, T. (2023). Defense-related enzyme production in oil palm seedlings against basal stem rot pathogen Ganoderma boninense and its biological control by Trichoderma asperellum. Physiological and Molecular Plant Pathology, 128, 102154. https://doi.org/10.1016/j.pmpp.2023.102154

Siswanto, J.E. (2020). Analisis limbah kelapa sawit sebagai bahan bakar boiler dengan menggunakan variasi campuran antara fiber dan cangkang buah sawit. Journal of Electrical Power Control and Automation (JEPCA), 3(1), 22. https://doi.org/10.33087/jepca.v3i1.35

Tan, M.I.S.M.H., Jamlos, M.F., Omar, A.F., Dzaharudin, F., Chalermwisutkul, S., & Akkaraekthalin, P. (2021). Ganoderma oninense disease detection by near‐infrared spectroscopy classification: A review. Sensors, 21(9), 3052. https://doi.org/10.3390/s21093052

Verma, M., Brar, S.K., Tyagi, R.D., Surampalli, R.Y., & Valéro, J.R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1–20. https://doi.org/10.1016/j.bej.2007.05.012

Winanti, W.S., & Prayudi, T. (2006). Perhitungan efisiensi boiler pada industri-industri tepung terigu. Jurnal Teknik Lingkungan, Edisi Khusus (Juni), 58-65.

Wulandari, S., Nisa, Y.S., Taryono, T., Indarti, S., & Sayekti, R.S. (2022). Sterilisasi peralatan dan media kultur jaringan. Agrotechnology Innovation (Agrinova), 4(2), 16-19. https://doi.org/10.22146/a.77010

Yani, A., & Ristyohadi, R. (2017). Analisis kehilangan steam dan penurunan temperatur pada jaringan distribusi steam dari PT. KDM ke PT. KNI. Turbo : Jurnal Program Studi Teknik Mesin, 6(2), 123–135. https://doi.org/10.24127/trb.v6i2.558

Downloads

Published

2025-03-18

How to Cite

Fajri, I., Hartulistiyoso, E., & Widyastuti, R. (2025). Design and Testing of Stream as a Sterilization Tool for Trichoderma sp. Propagation Media Using a Palm Oil Mill Steam Boiler. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(2), 570–581. https://doi.org/10.23960/jtep-l.v14i2.570-581

Issue

Section

Articles