Enhancing Sustainability in Packaging: Response Surface Optimized Sago Pith Waste Biocomposites with PBAT and MDI

Authors

  • Maya Irmayanti Universitas Padjadjaran
  • Sarifah Nurjanah Universitas Padjadjaran
  • Akbar Hanif Dawam Abdullah National Research and Innovation Agency
  • Rossy Choerun Nissa National Research and Innovation Agency
  • Yeyen Nurhamiyah National Research and Innovation Agency

DOI:

https://doi.org/10.23960/jtep-l.v14i3.979-990
Abstract View: 62

Abstract

This study aims to optimize the biocomposites of sago pith waste (SPW) for sustainable packaging applications. The biocomposite was prepared using the biodegradable polymer polybutylene adipate-co-terephthalate (PBAT) as a matrix and methylendifenyl diisocyanate (MDI) as a chain extender. RSM-CCD was used to assess the impact of the incorporation of SPW (5-20% p/p) and MDI (1–5%) into the PBAT matrix on the tensile strength and elongation of biocomposites by melt mixing. The optimal formula shown by RSM was 5% SPW and 5% MDI, which resulted in a 5.14 MPa tensile strength and 8.14% elongation. The barrier properties of all treatments, including moisture content, contact angle, and water absorption, were checked. The optimal formula showed good barrier properties compared to other treatments: water content of 3.12%, contact angle of 42.84°, and water absorption of 0.82%. Other characterizations of SEM, FTIR, DSC, TGA, and biodegradability tests showed an increase in SPW-PBAT compatibility due to the use of MDI. MDI as a chain extender had a positive impact on the material's strength, and the addition of SPW accelerated the degradation process, thus improving biodegradability.

 

Keywords: Biocomposite, Chain extender, Melt-mixing, Response Surface Methodology, Sago pith waste.

Downloads

Download data is not yet available.

Author Biographies

Maya Irmayanti, Universitas Padjadjaran

Master Program Agroindustrial Technology

Sarifah Nurjanah, Universitas Padjadjaran

Department of Agricultural and Biosystem Engineering

Akbar Hanif Dawam Abdullah, National Research and Innovation Agency

Research Center for Biomass and Bioproducts

Rossy Choerun Nissa, National Research and Innovation Agency

Research Center for Biomass and Bioproducts

Yeyen Nurhamiyah, National Research and Innovation Agency

Research Center for Biomass and Bioproducts

References

Albooyeh, A., Soleymani, P., & Taghipoor, H. (2022). Evaluation of the mechanical properties of hydroxyapatite-silica aerogel/epoxy nanocomposites: Optimizing by response surface approach. Journal of the Mechanical Behavior of Biomedical Materials, 136, 105513. https://doi.org/10.1016/j.jmbbm.2022.105513

Almond, J., Sugumaar, P., Wenzel, M.N., Hill, G., & Wallis, C. (2020). Determination of the carbonyl index of polyethylene and polypropylene using the specified area under band methodology with ATR-FTIR spectroscopy. E-Polymers, 20(1), 369–381. https://doi.org/10.1515/epoly-2020-0041

ALP (Associated Labels & Packaging). (2020). What Do Barrier Properties Do? https://associatedlp.com/news/2020/what-do-barrier-properties-do (Accessed at 23 May 2025)

Azura, A.R., Adzami, N.S., & Tajarudin, H.A. (2017). Utilization of Metroxylan sagu pith waste as biodegradable filler for natural rubber (NR) latex films. Solid State Phenomena, 264, 198–201. https://doi.org/10.4028/www.scientific.net/SSP.264.198

Barczewski, M., Mysiukiewicz, O., & Kloziński, A. (2018). Complex modification effect of linseed cake as an agricultural waste filler used in high density polyethylene composites. Iranian Polymer Journal, 27, 677–688. https://doi.org/10.1007/s13726-018-0644-3

Belaadi, A., Laouici, H., & Bourchak, M. (2020). Mechanical and drilling performance of short jute fibre-reinforced polymer biocomposites: Statistical approach. International Journal of Advanced Manufacturing Technology, 106, 1989–2006. https://doi.org/10.1007/s00170-019-04761-4

Benzannache, N., Belaadi, A., Boumaaza, M., & Bourchak, M. (2021). Improving the mechanical performance of biocomposite plaster/ Washingtonian filifira fibres using the RSM method. Journal of Building Engineering, 33, 101840. https://doi.org/10.1016/j.jobe.2020.101840

Bishop, G., Styles, D., & Lens, P.N.L. (2020). Recycling of European plastic is a pathway for plastic debris in the ocean. Environment International, 142, 105893. https://doi.org/10.1016/j.envint.2020.105893

Cai, X., Yang, X., Zhang, H., & Wang, G. (2018). Aliphatic-aromatic poly(carbonate-co-ester)s containing biobased furan monomer: Synthesis and thermo-mechanical properties. Polymer, 134, 63–70. https://doi.org/10.1016/j.polymer.2017.11.058

Fabian, D.R.C., Durpekova, S., Dusankova, M., Cisar, J., Drohsler, P., Elich, O., Borkova, M., Cechmankova, J., & Sedlarik, V. (2023). Renewable poly(lactic acid)lignocellulose biocomposites for the enhancement of the water retention capacity of the soil. Polymers, 15(10), 2243. https://doi.org/10.3390/polym15102243

Dixit, S., & Yadav, V.L. (2019). Optimization of polyethylene/polypropylene/alkali modified wheat straw composites for packaging application using RSM. Journal of Cleaner Production, 240, 118228. https://doi.org/10.1016/j.jclepro.2019.118228

Fauziah, A.R., Lanuru, M., Syahrul, M., & Werorilangi, S. (2020). Utilization of solid waste from sago flour industry (sago pith waste) as biodegradable plastic. Advances in Environmental Biology, 14(1), 42–47. https://doi.org/10.22587/aeb.2020.14.1.7

Gapsari, F., Purnowidodo, A., Hidayatullah, S., & Suteja, S. (2021). Characterization of Timoho fiber as a reinforcement in green composite. Journal of Materials Research and Technology, 13, 1305–1315. https://doi.org/10.1016/j.jmrt.2021.05.049

Giri, J., Lach, R., Grellmann, W., Susan, M.A.B.H., Saiter, J.M., Henning, S., Katiyar, V., & Adhikari, R. (2019). Compostable composites of wheat stalk micro- and nanocrystalline cellulose and poly(butylene adipate-co-terephthalate): Surface properties and degradation behavior. Journal of Applied Polymer Science, 136(43), 1–11. https://doi.org/10.1002/app.48149

Guimarães, M.R., Scatolino, M.V., Martins, M.A., Ferreira, S.R., Mendes, L.M., Lima, J.T., Junior, M.G., & Tonoli, G.H.D. (2022). Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials. Environmental Science and Pollution Research, 29(6), 8665–8683. https://doi.org/10.1007/s11356-021-16203-4

Hejna, A., Barczewski, M., Kosmela, P., Mysiukiewicz, O., Tercjak, A., Piasecki, A., Saeb, M.R., & Szostak, M. (2023). Sustainable chemically modified mater-bi/poly(ε-caprolactone)/cellulose biocomposites: Looking at the bulk through the surface. Research Square. https://doi.org/10.21203/rs.3.rs-3064683/v1

Hejna, A., Sulyman, M., Przybysz, M., Saeb, M.R., Klein, M., & Formela, K. (2020). On the correlation of lignocellulosic filler composition with the performance properties of poly(ε-caprolactone) based biocomposites. Waste and Biomass Valorization, 11(4), 1467–1479. https://doi.org/10.1007/s12649-018-0485-5

Istikowati, W.T., Sutiya, B., Sunardi, S., & Sunardi, S. (2021). Utilization of sago waste as animal feed material in Pemakuan Laut Village, Sungai Tabuk, Banjar Regency, South Kalimantan. PengabdianMu: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 6(2), 149–155. https://doi.org/10.33084/pengabdianmu.v6i2.1822

Khazabi, M., & Sain, M. (2014). Morphological and physico-thermal properties of soy-based open-cell spray polyurethane foam insulation modified with wood pulp fiber. Advances in Petroleum Exploration and Development, 7(1), 1–6.

Lai, J.C., Rahman, W.A.W.A., & Toh, W.Y. (2014). Mechanical, thermal and water absorption properties of plasticised sago pith waste. Fibers and Polymers, 15(5), 971–978. https://doi.org/10.1007/s12221-014-0971-8

Li, C., Chen, F., Lin, B., Zhang, C., & Liu, C. (2021). High content corn starch/Poly (butylene adipate-co-terephthalate) composites with high-performance by physical–chemical dual compatibilization. European Polymer Journal, 159, 110737. https://doi.org/10.1016/j.eurpolymj.2021.110737

Liu, Y., Liu, S., Liu, Z., Lei, Y., Jiang, S., Zhang, K., Yan, W., Qin, J., He, M., Qin, S., & Yu, J. (2021). Enhanced mechanical and biodegradable properties of PBAT/lignin composites via silane grafting and reactive extrusion. Composites Part B: Engineering, 220, 108980. https://doi.org/10.1016/j.compositesb.2021.108980

Mahata, D., Cherian, A., Parab, A., & Gupta, V. (2020). In situ functionalization of poly(butylene adipate-co-terephthalate) polyester with a multi-functional macromolecular additive. Iranian Polymer Journal, 29, 1045–1055. https://doi.org/10.1007/s13726-020-00860-2

Moustafa, H., Guizani, C., Dupont, C., Martin, V., Jeguirim, M., & Dufresne, A. (2017). Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustainable Chemistry and Engineering, 5(2), 1906–1916. https://doi.org/10.1021/acssuschemeng.6b02633

Nissa, R.C., Fikriyyah, A.K., Abdullah, A.H.D., & Pudjiraharti, S. (2019). Preliminary study of biodegradability of starch-based bioplastics using ASTM G21-70, dip-hanging, and soil burial test methods. IOP Conference Series: Earth and Environmental Science, 277, 012007. https://doi.org/10.1088/1755-1315/277/1/012007

Pan, H., Li, Z., Yang, J., Li, X., Ai, X., Hao, Y., Zhang, H., & Dong, L. (2018). The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends. RSC Advances, 8, 4610–4623. https://doi.org/10.1039/c7ra10745e

Plastics Europe. (2021). Plastics the fact 2021. Plastics Europe market research group (PEMRG) and conversio market & strategy GmbH, 1–34. https://plasticseurope.org/

Rajeshkumar, G., Seshadri, S.A., Devnani, G.L., Sanjay, M.R., Siengchin, S., Maran, P.J., Al-Dhabi, N.A., Karuppiah, P., Mariadhas, V.A., Sivarajasekar, N., & Anuf, A.R. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 310, 127483. https://doi.org/10.1016/j.jclepro.2021.127483

Rashid, M.b.M.R., Mijarsh, M.J.A., Seli, H., Johari, M.A.M., & Ahmad, Z.A. (2018). Sago pith waste ash as a potential raw material for ceramic and geopolymer fabrication. Journal of Material Cycles and Waste Management, 20, 1090–1098. https://doi.org/10.1007/s10163-017-0672-7

Rasyida, A., Fukushima, K., & Yang, M-C. (2017). Structure and properties of organically modified poly(butylene adipate-co-terephthalate) based nanocomposites. IOP Conference Series: Materials Science and Engineering, 223, 012023. https://doi.org/10.1088/1757-899X/223/1/012023

Scaffaro, R., Maio, A., Sutera, F., Gulino, E.F., & Morreale, M. (2019). Degradation and recycling of films based on biodegradable polymers: A short review. Polymers, 11(4), 651. https://doi.org/10.3390/polym11040651

Seo, Y-R., Bae, S-U., Gwon, J., Wu, Q., & Kim, B-J. (2020). Effects of methylenediphenyl 4,4’-diisocyanate and maleic anhydride as coupling agents on the properties of polylactic acid/polybutylene succinate/wood flour biocomposites by reactive extrusion. Materials, 13(7), 1660. https://doi.org/10.3390/ma13071660

Siruru, H., Syafii, W., Wistara, I.N.J., & Pari, G. (2019). Characteristics of metroxylon rumphii (pith and bark waste) from Seram Island, Maluku, Indonesia. Biodiversitas, 20(12), 3517–3526. https://doi.org/10.13057/biodiv/d201208

Song, M-M., Branford-White, C., Nie, H-L., & Zhu, L-M. (2011). Optimization of adsorption conditions of BSA on thermosensitive magnetic composite particles using response surface methodology. Colloids and Surfaces B: Biointerfaces, 84(2), 477–483. https://doi.org/10.1016/j.colsurfb.2011.02.002

Venkatachalam, H., & Palaniswamy, R. (2020). Bioplastic world: A review. Journal of Advanced Scientific Research, 11(3), 43–53. https://sciensage.info/index.php/JASR/article/view/505

Xie, X., Zhang, C., Weng, Y., Diao, X., & Song, X. (2020). Effect of diisocyanates as compatibilizer on the properties of BF/PBAT composites by in situ reactive compatibilization, crosslinking and chain extension. Materials, 13(3), 806. https://doi.org/10.3390/ma13030806

Xu, J., Feng, K., Li, Y., Xie, J., Wang, Y., Zhang, Z., & Hu, Q. (2024). Enhanced biodegradation rate of poly(butylene adipate-co-terephthalate) composites using reed fiber. Polymers, 16(3), 411. https://doi.org/10.3390/polym16030411

Yee, T.W., Sin, L.T., Rahman, W.A.W.A., & Samad, A.A. (2011). Properties and interactions of poly(vinyl alcohol)-sago pith waste biocomposites. Journal of Composite Materials, 45(21), 2199–2209. https://doi.org/10.1177/0021998311401073

Downloads

Published

2025-06-15

How to Cite

Irmayanti, M., Nurjanah, S., Abdullah, A. H. D., Nissa, R. C., & Nurhamiyah, Y. (2025). Enhancing Sustainability in Packaging: Response Surface Optimized Sago Pith Waste Biocomposites with PBAT and MDI. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(3), 979–990. https://doi.org/10.23960/jtep-l.v14i3.979-990

Issue

Section

Articles