Effectiveness of Silica Humate in Improving Soil Quality in Paddy Field Contaminated by Industrial Waste
DOI:
https://doi.org/10.23960/jtepl.v14i5.1913-1924
Abstract View: 115
Keywords:
Animal feed, Contaminated soil, Paper industry , Pharmaceutical industry, Silica humate, Soil amendmentAbstract
Soil degradation caused by industrial waste in Sidoarjo Regency has led to a decline in agricultural productivity, necessitating soil rehabilitation efforts. This study aimed to evaluate the effectiveness of silica humate as a soil amendment on paddy fields contaminated by industrial waste. The experiments were arranged according to the Factorial Complete Randomized Design, where the first factor: 3 kinds of industrial waste namely the pharmaceutical, livestock feed, and paper industry. Second factor; 5 doses of silica humat (0, 10, 20, 30, and 40 kg/ha). The parameters included soil pH, cation exchange capacity (CEC), total nitrogen (total-N), and available phosphorus (available-P), measured at 14 and 56 days after application (DAA). Results showed that the effectiveness of silica humate varied depending on the type of industrial waste and increased over time. On land contaminated with pharmaceutical waste, silica humate increased CEC from 44.34 to 52.52 cmol(+)/kg and available-P from 27.21 to 36.69 ppm at low doses. Land contaminated with animal feed waste showed the best results at a dose of 20 kg/ha, while land contaminated with paper industry waste required higher doses. These findings suggest that silica humate is promising as a viable soil amendment strategy, though optimal dosage rates must be tailored to specific industrial contamination types for maximum rehabilitation effectiveness.
Downloads
References
Agung-M, G.F., Hanafie Sy, M.R., & Mardina, P. (2013). Ekstraksi silika dari abu sekam padi dengan pelarut KOH. Konversi, 2(1), 28-31. https://doi.org/10.20527/k.v2i1.125
Amoah-Antwi, C., Kwiatkowska-Malina, J., Szara, E., Fenton, O., Thornton, S.F., & Malina, G. (2022). Assessing factors controlling structural changes of humic acids in soils amended with organic materials to improve soil functionality. Agronomy, 12(2), 1–17. https://doi.org/10.3390/agronomy12020283
Ampong, K., Thilakaranthna, M.S., & Gorim, L.Y. (2022). Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, 4, 848621. https://doi.org/10.3389/fagro.2022.848621
Antonangelo, J.A., Culman, S., & Zhang, H. (2024). Comparative analysis and prediction of cation exchange capacity via summation: Influence of biochar type and nutrient ratios. Frontiers in Soil Science, 4, 1–14. https://doi.org/10.3389/fsoil. 2024.1371777
Aprilia, B.I., Sasongko, P.E., & Siswanto. (2024). Aplikasi formulasi bahan pembenah tanah terhadap beberapa sifat kimia tanah berpasir dan produksi tanaman padi. Jurnal Agrotropika, 23(1), 89–98. http://dx.doi.org/10.23960/ja.v23i1.8342
BPS (Badan Pusat Statistik). (2023). Kabupaten Sidoarjo Dalam Angka 2023. Badan Pusat Statistik Kabupaten Sidoarjo.
BSIP (Badan Standarisasi Instrumen Pertanian). (2023). Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. (3rd Ed.). Badan Standarisasi Instrumen Pertanian, Jakarta.
Bahagia, M., Ilyas, I., & Jufri, Y. (2022). Evaluasi kandungan hara tanah fosfor (P) dan C-organik (C) di tiga lokasi sawah intensif di Kabupaten Aceh Besar. Jurnal Ilmiah Mahasiswa Pertanian, 7(2), 647–653. www.jim.unsyiah.ac.id/JFP
Barrow, N.J., & Hartemink, A.E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487(1–2), 21–37. https://doi.org/10.1007/s11104-023-05960-5
Belton, D.J., Deschaume, O., & Perry, C.C. (2012). An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. The FEBS Journal, 279(10), 1710–1720. https://doi.org/10.1111/j.1742-4658.2012.08531.x
Chakim, M.G., Mindari, W., & Widjajani, B.W. (2022). The potential of organomineral amendments in increasing the adsorption of lead (Pb) and cadmium (Cd) in a sandy loam soil. Journal of Degraded and Mining Lands Management, 9(4), 3753–3762. https://doi.org/10.15243/JDMLM.2022.094.3753
Coasne, B., Galarneau, A., Di Renzo, F., & Pellenq, R.J.M. (2010). Molecular simulation of nitrogen adsorption in nanoporous silica. Langmuir, 26(13), 10872–10881. https://doi.org/10.1021/la100757b
Debicka, M. (2024). The role of organic matter in phosphorus retention in eutrophic and dystrophic terrestrial ecosystems. Agronomy, 14(8), 1688. https://doi.org/10.3390/agronomy14081688
Fang, Q., Ma, Y., Zhang, X., Wei, S., & Hou, Y. (2020). Mitigating nitrogen emissions from dairy farming systems in China. Frontiers in Sustainable Food Systems, 4, 44. https://doi.org/10.3389/fsufs.2020.00044
Gelderman, R., & Lee, S. (2020). Nitrogen management for wheat production. In iGrow Wheat: Best Management Practices (pp. 91-98). SDSU Extension. https://extension.sdstate.edu/sites/default/files/2020-03/S-0005-11-Wheat.pdf
Hardyanti, I.S., Nurani, I., Hardjono HP, D.S., Apriliani, E., & Wibowo, E.A.P. (2017). Pemanfaatan silika (SiO2) dan bentonit sebagai adsorben logam berat Fe pada limbah batik. JST (Jurnal Sains Terapan), 3(2). https://doi.org/10.32487/jst.v3i2.257
Hartemink, A.E., & Barrow, N.J. (2023). Soil pH - nutrient relationships: The diagram. Plant and Soil, 486(1–2), 209–215. https://doi.org/10.1007/s11104-022-05861-z
Hassan, K.M., Ajaj, R., Abdelhamid, A.N., Ebrahim, M., Hassan, I.F., Hassan, F.A.S., Alam-Eldein, S.M., & Ali, M.A.A. (2024). Silicon: A powerful aid for medicinal and aromatic plants against abiotic and biotic stresses for sustainable agriculture. Horticulturae, 10(8), 806. https://doi.org/10.3390/horticulturae10080806
Joimel, S., Cortet, J., Jolivet, C.C., Saby, N.P.A., Chenot, E.D., Branchu, P., Consalès, J.N., Lefort, C., Morel, J.L., & Schwartz, C. (2016). Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Science of the Total Environment, 545–546, 40–47. https://doi.org/10.1016/j.scitotenv.2015.12.035
Khasanah, U., Mindari, W., & Suryaminarsih, P. (2021). Kajian pencemaran logam berat pada lahan sawah di kawasan industri Kabupaten Sidoarjo. Jurnal Teknik Kimia, 15(2), 73. https://doi.org/10.33005/jurnal_tekkim.v15i2.2545
Liu, Z., Rong, Q., Zhou, W., & Liang, G. (2017). Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLOS ONE, 12(3). https://doi.org/10.1371/journal. pone.0172767
McMahon, G. (2010). Extraction of fulvic minerals from humic substances. U.S. Patent No. 7,825,266.
Meng, F., Yuan, G., Wei, J., Bi, D., Ok, Y.S., & Wang, H. (2017). Humic substances as a washing agent for Cd-contaminated soils. Chemosphere, 181, 461–467. https://doi.org/10.1016/J.CHEMOSPHERE.2017.04.127
Mindari, W., Sasongko, P.E., Aditya, H.F., Karam, D.S., & Masri, I.N. (2023). Fertility index of industrial polluted land and plant response to heavy metal contamination. Malaysian Journal of Soil Science, 27(Cd), 125–137.
Mustaqim, A., Ifansyah, H., & Saidy, A.R. (2024). Pengaruh pemberian berbagai macam bahan organik terhadap ketersediaan hara nitrogen, fosfor dan kalium serta serapan nitrogen oleh jagung (Zea mays L.) pada tanah Ultisols. Acta Solum, 1(3), 151–157. https://doi.org/10.20527/actasolum.v1i3.2285
Mystrioti, C., & Papassiopi, N. (2024). A comprehensive review of remediation strategies for soil and groundwater contaminated with explosives. Sustainability, 16(3), 961. https://doi.org/10.3390/su16030961
Oshunsanya, S.O. (2019). Introductory chapter: Relevance of soil pH to agriculture. In Soil pH for Nutrient Availability and Crop Performance. IntechOpen. https://doi.org/10.5772/intechopen.82551
Pranckietien, I., & Jodaugien, D. (2020). The influence of various forms of nitrogen fertilization and meteorological factors on nitrogen compounds in soil under laboratory conditions. Agronomy, 10(12), 2011. https://doi.org/10.3390/agronomy10122011
Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H.J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009
Rahayu, R.D., Mindari, W., & Arifin, M. (2022). Pengaruh kombinasi silika dan asam humat terhadap ketersediaan nitrogen dan pertumbuhan tanaman padi pada tanah berpasir. Soilrens, 19(2), 23. https://doi.org/10.24198/soilrens.v19i2.38361
Rashmi, I., Kumawat, A., Munawery, A., Sreekumar Karthika, K., Kumar Sharma, G., Kala, S., & Pal, R. (2023). Soil amendments: An ecofriendly approach for soil health improvement and sustainable oilseed production. In Oilseed Crops - Uses, Biology and Production. IntechOpen. https://doi.org/10.5772/intechopen.106606
Rinklebe, J., Shaheen, S.M., & Yu, K. (2016). Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the U.S.A. and Asia. Geoderma, 270, 21–32. https://doi.org/10.1016/j.geoderma.2015.10.011
Sahebi, M., Hanafi, M.M., Akmar, A.S.N., Rafii, M.Y., Azizi, P., Tengoua, F.F., Azwa, J.N.M., & Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International, 2015, 396010. https://doi.org/10.1155/2015/396010
Seran, R. (2017). Pengaruh mangan sebagai unsur hara mikro esensial terhadap kesuburan tanah dan tanaman. Jurnal Pendidikan Biologi, 2(1), 13–14.
Singh, A.K., Kumar, A., & Chandra, R. (2022). Environmental pollutants of paper industry wastewater and their toxic effects on human health and ecosystem. Bioresource Technology Reports, 20, 101250. https://doi.org/10.1016/j.biteb.2022.101250
Sruthi, P., Shackira, A.M., & Puthur, J.T. (2017). Heavy metal detoxification mechanisms in halophytes: an overview. Wetlands Ecology and Management, 25(2), 129–148. https://doi.org/10.1007/s11273-016-9513-z
Stevenson, F.J. (1994). Humus Chemistry: Genesis, Composition, Reactions. (2nd Edition). John Wiley & Son, New York.
Suryokusumo, R., Aspan, A., & Nusantara, R.W. (2021). Kajian sifat kimia tanah pada lahan pasca pertambangan emas Desa Monterado Kecamatan Monterado Kabupaten Bengkayang. Jurnal Sains Pertanian Equatot, 10(4), 1.
Tan, K.H. (2014). Humic Matter in Soil and the Environment. CRC Press. https://doi.org/10.1201/b17037
Tang, Z., Chen, J., & Zhang, Y. (2024). Soil C, N, and P contents and organic phosphorus mineralization in constructed wetlands with different litter input in northern China. Journal of Soils and Sediments, 24(7), 2736–2750. https://doi.org/10.1007/ s11368-024-03849-z
Tandzi, L.N., Mutengwa, C., Ngonkeu, E., & Gracen, V. (2018). Breeding maize for tolerance to acidic soils: A review. Agronomy, 8(6), 84. https://doi.org/10.3390/agronomy8060084
Vitali, A., Russo, F., Moretti, B., Romani, M., Vidotto, F., Fogliatto, S., Celi, L., & Said-Pullicino, D. (2024). Interaction between water, crop residue and fertilization management on the source-differentiated nitrogen uptake by rice. Biology and Fertility of Soils, 60(6), 757–772. https://doi.org/10.1007/s00374-024-01794-0
Vodyanitskii, Y.N. (2016). Biochemical processes in soil and groundwater contaminated by leachates from municipal landfills (Mini review). Annals of Agrarian Science, 14(3), 249–256. https://doi.org/10.1016/j.aasci.2016.07.009
Wang, M., Chen, S., Chen, L., Wang, D., & Zhao, C. (2019). The responses of a soil bacterial community under saline stress are associated with Cd availability in long-term wastewater-irrigated field soil. Chemosphere, 236, 124372. https://doi.org/10.1016/j.chemosphere.2019.124372
Xu, J., Mohamed, E., Li, Q., Lu, T., Yu, H., & Jiang, W. (2021). Effect of humic acid addition on buffering capacity and nutrient storage capacity of soilless substrates. Frontiers in Plant Science, 12(July), 1–12. https://doi.org/10.3389/fpls.2021.644229
Yohana, O., Hanum, H., & Supriadi. (2013). Pemberian bahan silika pada tanah sawah berkadar P total tinggi untuk memperbaiki ketersediaan P dan Si tanah, pertumbuhan dan produksi padi (Oryza sativa L.). Jurnal Online Agroteknologi, 1(4), 1–9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nanda Ajeng Kartika, Wanti Mindari, Siswanto Siswanto, Muhammad Ghufron Chakim

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung

JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


