Thermal Performance of LPG Stove as Heat Source of Rotary Dryer for Drying Corn for Small Farmers

Authors

  • Ida Bagus Alit Universitas Mataram
  • I Gede Bawa Susana Universitas Mataram

DOI:

https://doi.org/10.23960/jtep-l.v14i2.537-546
Abstract View: 177

Abstract

Sunlight to dry post-harvest food materials such as corn highly depends on the weather. When it is cloudy or rainy, drying automatically stops. On the other hand, biomass dryer models such as rice husks are rather difficult to regulate the drying temperature. This study aims to create a dryer model that produces uniform temperatures and is easy for small farmers to operate. It is a rotary dryer with liquefied petroleum gas (LPG) energy. This study tested a small-scale rotary dryer based on drying time to reduce water content by up to 14%. The test used corn samples weighing 10 kg, 15 kg, and 20 kg with a water content of 18%. Testing to reduce water content to 14% is based on the Indonesian National Standard. The results showed that corn samples weighing 10 kg, 15 kg, and 20 kg required time and LPG requirements of 37 minutes and 0.092 kg, 52 minutes and 0.132 kg, and 90 minutes and 0.281 kg, respectively. The drying temperatures were 54.67°C, 55.96°C, and 57.63°C, respectively. Rotary dryers are useful for small farmers in developing areas who do not yet understand the technology. The short drying time allows this dryer machine to repeatedly dry corn.

 

Keywords: Rotary dryer, Liquefied petroleum gas, Corn drying, Drying rate.

Downloads

Download data is not yet available.

Author Biographies

Ida Bagus Alit, Universitas Mataram

https://www.scopus.com/authid/detail.uri?authorId=57200120336

 

I Gede Bawa Susana, Universitas Mataram

https://www.scopus.com/authid/detail.uri?authorId=57200121122

References

Abadiyah, N., Lestari, N.P., Taruna, I., Purbasari, D., & Sutarsi. Engineering characteristics of Curcuma Flour (Curcuma xanthorrhiza Roxb) from convection drying. Jurnal Teknik Pertanian Lampung, 13(2), 525-535. https://doi.org/10.23960/jtepl.v13i2.525-535

Alit, I.B., Susana, I.G.B., & Mara, I.M. (2020). Utilization of rice husk biomass in the conventional corn dryer based on the heat exchanger pipes diameter. Case Studies in Thermal Engineering, 22, 100764. https://doi.org/10.1016/j.csite.2020.100764

Benjamin, E., Stephen, A., Onyewuchi, E., & Uchenna, N. (2022). Design and analysis of energy and exergy performance of an LPG-powered fish drying machine. Jurnal Kejuruteraan, 34(1), 117-129. https://doi.org/10.17576/jkukm-2022-34(1)-11

Brooker, D.B., Bakker-Arkema, F.W., & Hall, C.W. (1992). Drying and Storage of Grain and Oilseeds. The AVI Publishing Company, Westport.

BSN. (2020). SNI 8926:2020 – Jagung. Badan Standardisasi Nasional, Jakarta.

Burgess-Limerick, R. (2018). Participatory ergonomics: Evidence and implementation lessons. Applied Ergonomics, 68, 289-293. https://doi.org/10.1016/j.apergo.2017.12.009

Çengel, Y.A., Boles, M.A., & Kanoglu, M. (2019). Thermodynamics an Engineering Approach, 9th. McGraw-Hill.

Çengel, Y.A., Cimbala, J.M., & Ghajar, A.J. (2022). Thermal-fluid Sciences, 6th. McGraw-Hill.

Charmongkolpradit, S., Somboon, T., Phatchana, R., Sang-aroon, W., & Tanwanichkul, B. (2021). Influence of drying temperature on anthocyanin and moisture contents in purple waxy corn kernel using a tunnel dryer. Case Studies in Thermal Engineering, 25, 100886. https://doi.org/10.1016/j.csite.2021.100886

Dasore, A., Polavarapu, T., Konijeti, R., & Puppala, N. (2020). Convective hot air drying kinetics of red beetroot in thin layers. Frontiers in Heat and Mass Transfer, 14(1). https://doi.org/10.5098/hmₜ.14.23

Debowski, M., Bukowski, P., Kobel, P., Bieniek, J., Romanski, L., & Knutel, B. (2021). Comparison of energy consumption of cereal grain dryer powered by LPG and hard coal in polish conditions.

Energies, 14(14), 4340. https://doi.org/10.3390/en14144340

Delgado-Plaza, E., Quilambaqui, M., Peralta-Jaramillo, J., Apolo, H., & Velázquez-Martí, B. (2020). Estimation of the energy consumption of the rice and corn drying process in the equatorial zone. Applied Sciences, 10(21), 7497. https://doi.org/10.3390/app10217497

Djaeni, M., Irfandy, F., Utari, F.D. (2019). Drying rate and efficiency energy analysis of paddy drying using dehumidification with zeolite. Journal of Physics: Conference Series, 1295, 012049. https://doi.org/10.1088/1742-6596/1295/1/012049

Ettahi, K., Chaanaoui, M., Sébastien, V., Abderafi, S., & Bounahmidi, T. (2022). Modeling and design of a solar rotary dryer bench test for phosphate sludge. Modelling and Simulation in Engineering, 2022(1), 5574242. https://doi.org/10.1155/2022/5574242

Giudice, A.D., Acampora, A., Santangelo, E., Pari, L., Bergonzoli, S., Guerriero, E., Petracchini, F., Torre, M., Paolini, V., & Gallucci, F. (2019). Wood chip drying through the using of a mobile rotary dryer. Energies, 12(9), 1590. https://doi.org/10.3390/en12091590

Hamdani., Rizal, T.A., & Muhammad, Z. (2018). Fabrication and testing of hybrid solar-biomass dryer for drying fish. Case Studies in Thermal Engineering, 12, 489-496. https://doi.org/10.1016/j.csite.2018.06.008

Hemhirun, S., & Bunyawanichakul, P. (2020). Effect of the initial moisture content of the paddy drying operation for the small community. Journal of Agricultural Engineering, 51(3), 176-183. https://doi.org/10.4081/jae.2020.1079

Ince, R., Güzel, E., & Ince, A. (2008). Thermal properties of some oily seeds. Journal of Agricultural Machinery Science, 4(4), 399-405.

Kabeel, A.E., & Abdelgaied, M. (2016). Performance of novel solar dryer. Process Safety and Environmental Protection, 102, 183189. https://doi.org/10.1016/j.psep.2016.03.009

Lakshmi, D.V.N., Muthukuma, P., Ekka, J.P., Nayak, P.K., & Layek, A. (2019). Performance comparison of mixed mode and indirect mode parallel flow forced convection solar driers for drying Curcuma zedoaria. Journal of Food Process Engineering., 42(4), e13045. https://doi.org/10.1111/jfpe.13045

Lamrani, B., & Draoui, A. (2020). Thermal performance and economic analysis of an indirect solar dryer of wood integrated with packed-bed thermal energy storage system: A case study of solar thermal applications. Drying Technology, 39(10), 1371-1388. https://doi.org/10.1080/07373937.2020.1750025

Li, T., Li, C., Li, B., Li, C., Fang, Z., Zeng, Z., Ou, W., & Huang, J. (2020). Characteristic analysis of heat loss in multistage counter-flow paddy drying process. Energy Reports, 6, 2153-2166. https://doi.org/10.1016/j.egyr.2020.08.006

Li, Z., Zhang, Z., Feng, Z., Chen, J., Zhao, L., Gao, Y., Sun, S., Zhao, X., & Song, C. (2022). Energy transfer analysis of the SH626 sheet rotary dryer on the production system perspective. Energy Reports, 8, 13-20. https://doi.org/10.1016/j.egyr.2022.03.057

Dirjen Migas (2024). Konversi Mitan ke Gas. Direktorat Jenderal Minyak dan Gas Bumi, Kementerian Energi dan Sumber Daya Mineral, Jakarta: 49 p.

Murali, S., Amulya, P.R., Alfiya, P.P., Delfiya, D.S.A., & Samuel, M.P. (2020). Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps. Renewable Energy, 147(1), 2417-2428. https://doi.org/10.1016/j.renene.2019.10.002

Nazghelichi, T., Kianmehr, M.H., & Aghbashlo, M. (2010). Thermodynamic analysis of fluidized bed drying of carrot cubes.

Energy, 35(12), 4679-4684. https://doi.org/10.1016/j.energy.2010.09.036

Nguimdo, L.A., & Valdo, N.K. (2020). Design and implementation of an automatic indirect hybrid solar dryer for households and small International Journal of Renewable Energy Research, 10(3), 1415-1425. https://doi.org/10.20508/ijrer.v10i3.11051.g8032

Nirmaan, A.M.C., Prasantha, B.D.R., & Peiris, B.L. (2020). Comparison of microwave drying and oven-drying techniques for moisture determination of three paddy (Oryza sativa L.) varieties. Chemical and Biological Technologies in Agriculture, 7(1). https://doi.org/10.1186/s40538-019-0164-1

Oyewola, O.M., Petinrin, M.O., & Sanusi, H.O. (2023). Flow and heat transfer characteristics in channels with piriform dimples and protrusions. Frontiers in Heat and Mass Transfer, 20(1). https://doi.org/10.5098/hmₜ.20.16

Sormunen, E., Mäenpää‑Moilanen, E., Ylisassi, H., Turunen, J., Remes, J., Karppinen, J., & Martimo, K.P. (2022). Participatory ergonomics intervention to prevent work disability among workers with low back pain: a randomized clinical trial in workplace setting. Journal of Occupational Rehabilitation, 32, 731-742. https://doi.org/10.1007/s10926-022-10036-9

Sunarti, D., & Turang, A. (2017). Penanganan Panen dan Pasca Panen Jagung untuk Tingkat Mutu Jagung. Balai Pengkajian Teknologi Pertanian Sulawesi Utara.

Susana, I.G.B., Alit, I.B., & Mara, I.M. (2019). Optimization of corn drying with rice husk biomass energy conversion through heat exchange drying devices. International Journal of Mechanical and Production Engineering Research and Development, 9(5), 1023-1032.

Susana, I.G.B., Alit, I.B., & Okariawan, I.D.K. (2023). Rice husk energy rotary dryer experiment for improved solar drying thermal performance on cherry coffee. Case Studies in Thermal Engineering, 41, 102616. https://doi.org/10.1016/j.csite.2022.102616

Trojosky, M. (2019). Rotary drums for efficient drying and cooling. Drying Technology, 37(5), 632-651. https://doi.org/10.1080/07373937.2018.1552597

Waheed, M.A., & Komolafe, C.A. (2019). Temperatures dependent drying kinetics of cocoa beans varieties in air-ventilated oven. Frontiers in Heat and Mass Transfer, 12, 1-7. https://doi.org/10.5098/hmₜ.12.8

Xie, Q., Chen, Z., Mao, Y., Chen, G., & Shen, W. (2018). Case studies of heat conduction in rotary drums with L-shaped lifters via DEM. Case Studies in Thermal Engineering, 11, 145-152. https://doi.org/10.1016/j.csite.2018.02.001

Downloads

Published

2025-03-18

How to Cite

Alit, I. B., & Bawa Susana, I. G. (2025). Thermal Performance of LPG Stove as Heat Source of Rotary Dryer for Drying Corn for Small Farmers. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(2), 537–546. https://doi.org/10.23960/jtep-l.v14i2.537-546

Issue

Section

Articles