Improving Mechanical Properties of Biofoam Using Oil Palm Fiber as Filler at Various Temperatures and Processing Times

Authors

  • Feri Rahmadani Lambung Mangkurat University
  • Isna Syauqiah Lambung Mangkurat University
  • Agung Nugroho Lambung Mangkurat University

DOI:

https://doi.org/10.23960/jtep-l.v14i1.130-136
Abstract View: 286

Abstract

Biofoam, as an alternative packaging material based on tapioca starch, has become a choice for environmentally friendly packaging. However, biofoam has a drawback in terms of weak mechanical properties. The use of oil palm fiber, a by-product of CPO production, has gained interest as a material that can improve the mechanical properties of biofoam. This study aims to produce biofoam with the best mechanical characteristics as packaging material through variations in temperature and processing time. The production of biofoam was carried out using the thermopressing method on tray-shaped molds with variations in molding temperature of 180°C, 190°C, and 200°C for 180 seconds and 210 seconds. The dough formulation consisted of 80% starch, 20% fiber, with the addition of 25 grams of water. Mechanical property testing was conducted through tests for moisture content, water adsorption, biodegradability, compressive strength, and tensile strength. The variation of 190°C temperature and 210 seconds baking time resulted in biofoam with the best mechanical properties. This biofoam showed the highest compressive strength value of 26.94 kPa, tensile strength test of 83.11 kPa, the second-highest biodegradability with a percentage of 78.93%, and the second-lowest moisture content with a value of 7.56%. These results indicate that biofoam at a molding temperature of 190°C and a baking time of 210 seconds has the best mechanical properties, making it superior as an environmentally friendly alternative packaging material compared to other formulations.

 

Keywords: Biofoam, Oil palm fiber, Temperature, Thermopressing.

Downloads

Download data is not yet available.

Author Biographies

Feri Rahmadani, Lambung Mangkurat University

Department of Chemical Engineering, Engineering Faculty

Isna Syauqiah, Lambung Mangkurat University

Department of Chemical Engineering, Engineering Faculty

Agung Nugroho, Lambung Mangkurat University

Department of Agro-industrial Technology, Faculty of Agriculture

References

Bakar, N. F. A., Rahman, N. A., Mahadi, M. B., Zuki, S. A. M., Amin, K. N. M., Wahab, M. Z., & Lenggoro, I. W. (2021). Nanocellulose from oil palm mesocarp fiber using hydrothermal treatment with low concentration of oxalic acid. Materials Today: Proceedings, 48, 1899–1904. https://doi.org/10.1016/j.matpr.2021.09.357

Bruscato, C., Malvessi, E., Brandalise, R. N., & Camassola, M. (2019). High performance of macrofungi in the production of mycelium-based biofoams using sawdust — Sustainable technology for waste reduction. Journal of Cleaner Production, 234, 225–232. https://doi.org/10.1016/J.JCLEPRO.2019.06.150

da Silva, F. T., de Oliveira, J. P., Fonseca, L. M., Bruni, G. P., da Rosa Zavareze, E., & Dias, A. R. G. (2020). Physically cross-linked aerogels based on germinated and non-germinated wheat starch and PEO for application as water absorbers for food packaging. International Journal of Biological Macromolecules, 155, 6–13. https://doi.org/10.1016/j.ijbiomac.2020.03.123

Engel, J. B., Ambrosi, A., & Tessaro, I. C. (2019). Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydrate Polymers, 225(May), 115234. https://doi.org/10.1016/j.carbpol.2019.115234

Hutagalung, S., Sibarani, J., Pramesti, R. Y., & Puspaningtya, T. H. R. (2024). Modifikasi Biofoam Berbasis Pati Singkong dengan Serat Eceng Gondok dan Variasi Konsentrasi Plasticizer. KOVALEN: Jurnal Riset Kimia, 10(2), 114–125. https://doi.org/10.22487/kovalen.2024.v10.i2.17104

Kahvand, F., & Fasihi, M. (2020). Microstructure and physical properties of thermoplastic corn starch foams as influenced by polyvinyl alcohol and plasticizer contents. International Journal of Biological Macromolecules, 157, 359–367. https://doi.org/10.1016/j.ijbiomac.2020.04.222

Kaisangsri, N., Kowalski, R. J., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2019). Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams. Industrial Crops and Products, 142(September), 111810. https://doi.org/10.1016/j.indcrop.2019.111810

Kremensas, A., Vaitkus, S., Vėjelis, S., Członka, S., & Kairytė, A. (2021). Hemp shivs and corn-starch-based biocomposite boards for furniture industry: Improvement of water resistance and reaction to fire. Industrial Crops and Products, 166(April), 1–11. https://doi.org/10.1016/j.indcrop.2021.113477

Linda, H., Ariza, Di., & Rahmi, A. (2021). Pembuatan Biofoam Berbahan Dasar Ampas Tebu dan Whey. Jurnal Kimia Dan Kemasan, 43(2), 75–81.

Lubis, N. rizqi F., Dewi, R., Sulhatun, S., Ginting, Z., & Muhammad, M. (2022). Biofoam Berbahan Pati Sagu Dengan Penguat Selulosa Tandan Kosong Kelapa Sawit Sebagai Kemasan Makanan Dengan Metode Thermopressing. Chemical Engineering Journal Storage (CEJS), 2(3), 95. https://doi.org/10.29103/cejs.v2i3.6419

Machado, C. M., Benelli, P., & Tessaro, I. C. (2020). Study of interactions between cassava starch and peanut skin on biodegradable foams. International Journal of Biological Macromolecules, 147, 1343–1353. https://doi.org/10.1016/j.ijbiomac.2019.10.098

Mahmud, M. A., Belal, S. A., & Gafur, M. A. (2023). Development of a biocomposite material using sugarcane bagasse and modified starch for packaging purposes. Journal of Materials Research and Technology, 24, 1856–1874. https://doi.org/10.1016/j.jmrt.2023.03.083

Mejouyo, P., Tiaya, E. M., Sikame Tagne, N. R., Tiwa, S. T., & Njeugna, E. (2022). Experimental study of water-sorption and desorption of several varieties of oil palm mesocarp fibers. Results in Materials, 14(May). https://doi.org/10.1016/j.rinma.2022.100284

Muharram, F. I. (2020). Penambahan Kitosan Pada Biofoam Berbahan Dasar Pati. Edufortech, 5(2). https://doi.org/10.17509/edufortech.v5i2.28814

Muspira, N., Fachraniah, F., & Syaifruddin, S. (2024). Pembuatan Biofoam dari Pati Singkong Dengan Tambahan Serat Selulosa dari Jerami Padi Sebagai Filler. Jurnal Teknologi, 24(1), 67–74.

Nugroho, A., Maharani, D. M., Legowo, A. C., Hadi, S., & Purba, F. (2022). Enhanced mechanical and physical properties of starch foam from the combination of water hyacinth fiber (Eichhornia crassipes) and polyvinyl alcohol. Industrial Crops and Products, 183(November 2021). https://doi.org/10.1016/j.indcrop.2022.114936

Pereira, P. H. F., Souza, N. F., Ornaghi, H. L., & de Freitas, M. R. (2020). Comparative analysis of different chlorine-free extraction on oil palm mesocarp fiber. Industrial Crops and Products, 150(March). https://doi.org/10.1016/j.indcrop.2020.112305

Sihombing, Y. A., Sinaga, M. Z. E., Hardiyanti, R., Susilawati, Saragi, I. R., & Rangga. (2022). Preparation, characterization, and desalination study of polystyrene membrane integrated with zeolite using the electrospinning method. Heliyon, 8(8), 4–9. https://doi.org/10.1016/j.heliyon.2022.e10113

Tacha, S., Somord, K., Rattanawongkun, P., Intatha, U., Tawichai, N., & Soykeabkaew, N. (2022). Bio-nanocomposite foams of starch reinforced with bacterial nanocellulose fibers. Materials Today: Proceedings, 75, 119–123. https://doi.org/10.1016/j.matpr.2022.12.049

Downloads

Published

2025-01-20

How to Cite

Rahmadani, F., Syauqiah, I., & Nugroho, A. (2025). Improving Mechanical Properties of Biofoam Using Oil Palm Fiber as Filler at Various Temperatures and Processing Times. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(1), 130–136. https://doi.org/10.23960/jtep-l.v14i1.130-136