Analysis Rice Field Drought Potential using the Standardized Precipitation Index (SPI) Method

Authors

  • Rival Doli Yusman Andalas University
  • Fadli Irsyad Andalas University
  • Feri Arlius Andalas University
  • Rizky Armei Saputra Meteorology, Climatology and Geophysical Agency
  • Delvi Yanti Andalas University

DOI:

https://doi.org/10.23960/jtep-l.v14i2.494-505
Abstract View: 133

Abstract

Drought analysis can be used as an early warning of drought in rice fields, which can be identified by connecting various parameters. This study aims to identify the potential for rice fields vulnerable to drought in Agam Regency. Drought is primarily caused by uneven rainfall distribution, leading to imbalanced hydrological conditions. This study used the last 30 years of rainfall data (1993 2022) from five stations located at Agam Regency (Canduang and Gumarang) and the rest outside of the study area (Padang Panjang, Suliki, and Paraman Talang). Spatial analysis of drought distribution was carried out using the Inverse Distance Weighted (IDW) method. The results showed the consistency test value of rainfall data for all five stations was obtained with an average of R² with a value of 0.992, the potential area of rice fields with a dry and very dry category was 13,640.61 ha and 904.55 ha, respectively. The conclusions of this study are (i) the districts with the most potential to be affected by drought (dry and very dry categories) are Tilatang Kamang and Malalak District, with an area of 2,058.15 ha and 750.48 ha, respectively, (ii) it is important to prepare the water shortage in the dry season by utilizing rivers, irrigation and reservoirs in the area.

 

Keywords: Agam Regency, Drought Potential, Rain, Rice Fields, SPI.

Downloads

Download data is not yet available.

Author Biographies

Rival Doli Yusman, Andalas University

Graduate Program, Department of Agricultural Engineering and Biosystems, Faculty of Agricultural Technology

Fadli Irsyad, Andalas University

Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology

Feri Arlius, Andalas University

Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology

Rizky Armei Saputra, Meteorology, Climatology and Geophysical Agency

Meteorology, Climatology and Geophysical Agency

Delvi Yanti, Andalas University

Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology

References

Aprilliyanti, T., & Zainuddin, M. (2017). Pemetaan potensi kekeringan lahan se-pulau batam menggunakan teknik sistem informasi geografis (SIG) dan penginderaan jauh. Majalah Geografi Indonesia, 31(1), 90-94. https://doi.org/10.22146/mgi.24251

Arlius, F., Irsyad, F., & Yanti, D. (2017). Analisis daya dukung lahan untuk sawah tadah hujan di Kabupaten Pasaman Barat. Rona Teknik Pertanian, 10(1), 23–33. https://doi.org/10.17969/rtp.v10i1.7246

Awalina, R., Yanti, D., & Irsyad, F. (2021). Analisis faktor yang mempengaruhi produksi padi salibu Daerah Sumatera Barat. Jurnal Teknologi Pertanian Andalas, 25(1), 90. https://doi.org/10.25077/jtpa.25.1.90-95.2021

Dutta, D., Kundu, A., Patel, N.R., Saha, S.K., & Siddiqui, A.R. (2015). Assessment of agricultural drought in Rajasthan (India) using remote sensing derived vegetation condition index (VCI) and standardized precipitation index (SPI). The Egyptian Journal of Remote Sensing and Space Science, 18(1), 53–63. https://doi.org/10.1016/j.ejrs.2015.03.006

Firmansyah, Y. (2021). Analisis data curah hujan yang hilang dengan menggunakan metode rasional dan metode inversed square distance di Stasiun Cipaku, Cipeusing, dan Cisampih. [Undergraduate Thesis], Itenas.

Hidayat, Y.M., Harlan, D., & Winskayati. (2014). Analisis penggunaan air irigasi dengan teknik analytical hierarchy process di Wanir Kabupaten Bandung. Jurnal Sumber Daya Air, 10(1), 1–12.

Hidayati, R. (2017). Klasifikasi iklim oldeman dan aplikasinya di Indonesia. [Undergraduate Thesis], Institut Pertanian Bogor.

Irsyad, F., & Oue, H. (2021). Predicting future dry season periods for irrigation management in West Sumatra, Indonesia. Paddy and Water Environment, 19, 683–697. https://doi.org/10.1007/s10333-021-00867-2

Irsyad, F., Oue, H., Utami, A.S., & Ekaputra, E.G. (2023). Impacts of the dry season on rice production using landsat 8 in West Sumatra. Paddy and Water Environment, 21, 205–217. https://doi.org/10.1007/s10333-022-00922-6

Kurnia, K.D. (2019). Analisis Potensi kekeringan lahan sawah dengan menggunakan metode normalized differency drought index (NDDI) dan thermal vegetation index (TVI) (Studi kasus: Kabupaten Bantul). [Undergraduate Thesis], ITN Malang. http://eprints.itn.ac.id/id/eprint/4039

Lee, H., Calvin. K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W.W.L., Connors, S.L., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., Jotzo, F., Krug, T., Lasco, R., Lee, J-Y. Masson-Delmotte, V., Meinshausen, M., intenbeck, K., Mokssit, A., Otto, F.E.L., Pathak, M., Pirani, A., Poloczanska, E., Pörtner, H-O., Revi, A., Roberts, D.C., Roy, J., Ruane, A.C., Skea, J., Shukla, P.R., Slade, R., Slangen, A., Sokona, Y., Sörensson, A.A., Tignor, M., van Vuuren, D., Wei, Y-M., Winkler, H., Zhai, P., & Zommers, Z. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change.

Lotfirad, M., Gisavandani, H.E., & Adib, A. (2022). Drought monitoring and prediction using SPI, SPEI, and random forest model in various climates of Iran. Water and Climate Change, 13(2), 383–406. https://doi.org/10.2166/wcc.2021.287

Malini, C., Halik, G., & Agung Wiyono, R.U. (2021). Analisis kekeringan meteorologi menggunakan metode standardized preciptation index (SPI) di DAS Bedadung Kabupaten Jember. Teras Jurnal, 11(2), 307. https://doi.org/10.29103/tj.v11i2.483

Masruroh, D., & Bowo, C. (2022). Drought analysis by using standardized precipitation index (SPI) method and their effects on rice

and maize productivity. Jurnal Tanah dan Sumberdaya Lahan, 9(2), 277–284. https://doi.org/10.21776/ub.jtsl.2022.009.2.8

Maulina, S.M., Christiana, R., & Widodo, M.L. (2022). Analisis curah hujan untuk pendugaan debit banjir dan debit andalan dengan metode FJ Mock (Studi kasus: Sungai Kapuas Kecamatan Tayan Hilir Kabupaten Sanggau). Jurnal Ilmu Teknik, 3(2). https://doi.org/10.37058/aks.v3i2.4580

Mckee, T.B., Doesken, N.J., & Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scale. 8th Conference on Applied Climatology, 179-184. https://doi.org/10.1002/jso.23002

Narulita, I., Rahayu, R., Kusratmoko, E., Supritna, &, Djuwansah, M. (2019). Ancaman kekeringan meteorologis di pulau kecil tropis akibat pengaruh El-Nino dan Indian ocean dipole (IOD) positif, studi kasus: Pulau Bintan. Jurnal Lingkungan dan Bencana Geologi, 10(3), 127–138. http://dx.doi.org/10.34126/jlbg.v10i3.252

Naylor, R.L., Battisti, D.S., Vimont, D.J., Falcon, W.P., & Burke, M.B. (2007). Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proceedings of the National Academy of Sciences of the United States of America, 104, 7752–7757. https://doi.org/10.1073/pnas.0701825104

Novita, F., Harisuseno, D., & Suhartanto, E. (2021). Analisis kekeringan meteorologi dengan menggunakan metode standardized precipitation (SPI) dan reconnaissance drought index (RDI) di DAS Lekso Kabupaten Blitar. Jurnal Teknologi dan Rekayasa Sumber Daya Air, 1(2), 672–685.

Nurhasanah., Fauzi, M., & Trimaijon. (2018). Analisis indeks kekeringan daerah aliran sungai Batang Anai dengan menggunakan

metode standardized precipitation index (SPI). Jom FTEKNIK, 5(1).

Pramono, G.H. (2008). Akurasi metode IDW dan kriging untuk interpolasi sebaran sedimen tersuspensi di Maros, Sulawesi Selatan. Forum Geografi, 22(2), 145–158. https://doi.org/10.23917/forgeo.v22i2.4988

Rahmalina, W., & Novreta. (2020). Peramalan indeks kekeringan kelayang menggunakan metode sarima dan SPI. Potensi : Jurnal Sipil Politeknik, 22(1), 64–75. ttps://doi.org/10.35313/potensi.v22i1.1824

Ruminta. (2016). Analisis penurunan produksi tanaman padi akibat perubahan iklim di Kabupaten Bandung Jawa Barat. Jurnal Kultivasi, 15(1), 37–45. https://doi.org/10.24198/kultivasi.v15i1.12006

Ruminta., Rosniawaty, S., & Wahyudin, A. (2016). Pengujian sensitivias kekeringan dan daya adaptasi tujuh varieas padi di wilayah

dataran medium Jatinangor. Jurnal Kultivasi, 15(2), 114–120. https://doi.org/10.24198/kultivasi.v15i2.11909

Saada, N., & Abu-Romman, A. (2017). Multi-site modeling and simulation of the standardized precipitation index (SPI) in Jordan. Journal of Hydrology: Regional Studies, 14, 83–91. https://doi.org/10.1016/j.ejrh.2017.11.002

Shah, R., Bharadiya, N., & Manekar, V. (2015). Drought index computation using standardized precipitation index (SPI) method for Surat District, Gujarat. Aquatic Procedia, 4, 1243–1249. https://doi.org/10.1016/j.aqpro.2015.02.162

Supadi. (2009). Pengkajian penanganan pemberian air irigasi di petak terisolir ujung saluran irigasi pada musim kemarau. Media Komunikasi Teknik Sipil, 17(1), 1–8.

Surmaini, E., Runtunuwu, E., & Las, I. (2011). Upaya sektor pertanian dalam menghadapi perubahan iklim. Jurnal litbang pertanian, 30(1), 1–7.

Wahyudi, S. (2018). Pengelolaan Iklim dan Tanaman Pangan. [Undergraduate Thesis], Universitas Gadjah Mada.

Widyastuti, R., Tambunan, M.P., & Tambunan, R.P. (2020). Pola sebaran kekeringan di Kecamatan Simpenan menggunakan metode SPI (standardized precipitation index). Jurnal Geosaintek, 6(1), 19–24. http://dx.doi.org/10.12962/j25023659.v6i1.6272

Downloads

Published

2025-03-05

How to Cite

Yusman, R. D., Irsyad, F., Arlius, F., Saputra, R. A., & Yanti, D. (2025). Analysis Rice Field Drought Potential using the Standardized Precipitation Index (SPI) Method. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(2), 494–505. https://doi.org/10.23960/jtep-l.v14i2.494-505

Issue

Section

Articles