Chemical Content Evaluation of Peaberry Robusta Green Bean Using FT NIRS Method

Authors

  • Bagus Setyawan Universitas PGRI Banyuwangi
  • Yuvita Lira Vesti Arista Universitas PGRI Banyuwangi
  • Arfiati Ulfa Utami Universitas PGRI Banyuwangi

DOI:

https://doi.org/10.23960/jtep-l.v14i1.202-214
Abstract View: 217

Abstract

Mount Ijen is a prominent region for peaberry Robusta coffee beans, which has entered international markets. Accurate real-time estimation of its chemical components is crucial for export activities. This study evaluated moisture content, lipid, and caffeine in Robusta peaberry coffee beans from Ijen using FT-NIRS (Fourier Transform – Near Infrared Spectroscopy). A total of 50 samples were scanned in triplicate, generating 150 spectral data points. The data were optimized for wavelength selection and pre-treated using Standard Normal Variate Transformation (SNV), Second Derivative (dg2), Multiplicative Scatter Correction (MSC), and normalization. Results showed that FT-NIRS proved effective for rapid and accurate estimation of these components. The best calibration model used Kubelka-Munk transformation with dg2 pre-treatment in the 1000-2500 nm wavelength range. Optimal Partial Least Squares (PLS) factors were PLS 4 for lipid content (R2 = 0.98, SEP = 0.013%, SEC = 0.012%, CV = 0.81, RPD = 2.03, consistency = 95.21%), PLS 5 for moisture content (R2 = 0.94, SEP = 0.014%, SEC = 0.014%, CV = 0.80, RPD = 4.88, consistency = 101.02%), and PLS 5 for caffeine content (R2 = 0.94, SEP = 0.014%, SEC = 0.014%, CV = 0.80, RPD = 4.88, consistency = 101.02%).

 

Keywords: Absorbance, Caffeine, Lipid, Moisture Content, Pre-Treatment.

Downloads

Download data is not yet available.

Author Biographies

Bagus Setyawan, Universitas PGRI Banyuwangi

Department of Agricultural Product Technology, Faculty of Agriculture

Yuvita Lira Vesti Arista, Universitas PGRI Banyuwangi

Department of Agricultural Product Technology, Faculty of Agriculture

Arfiati Ulfa Utami, Universitas PGRI Banyuwangi

Department of Agricultural Product Technology, Faculty of Agriculture

References

Abbas, O., Pissard, A., & Baeten, V. (2020). Near-infrared, mid-infrared, and Raman spectroscopy. Chemical Analysis of Food: Techniques and Applications. 2nd edition: 77–134. https://doi.org/10.1016/B978-0-12-813266-1.00003-6

Aernouts, B., & De Baerdemaeker, J. (2009). Application of near infrared spectroscopy for the characterization of fat content in dairy products. Journal of Near Infrared Spectroscopy, 17(4), 285-295.

AOAC (Association of Official Analytical Chemistry). (2012). Official Method of Analysis. Association of Official Analytical Chemists. 19th edition, Washington DC., 121-130.

Arista, Y.L.V.., Budiastra, I.W., & Hasbullah, R. (2022). Evaluation of chemichal content of desiccated coconut using FT-NIR spectroscopy. IOP Conference Series: Earth and Environmental Science, 1024(1). https://doi.org/10.1088/1755-1315/1024/1/012020

Ayu, P.C., Rindang, A., & Sebayang, N.U.W. (2024). NIR spectroscopy application to determine the carbohydrate and lipid content in green bean coffee. IOP Conference Series: Earth and Environmental Science, 1302(1), 012114. http://dx.doi.org/10.1088/1755-1315/1302/1/012114

Beauchemin, K.A., & McKinnon, J.J. (2009). Infrared spectroscopy for the analysis of animal feed. CRC Press.

BSN (Badan Standarisasi Nasional). (2008). SNI 01-2907-2008: Syarat Mutu Biji Kopi. Badan Standarisasi Nasional, Jakarta.

Budiastra, W., Sutrisno, M., Widyotomo, S., & Ayu, P.C. (2020). Determination of trigonelline and chlorogenic acid (CGA) concentration in intact coffee beans by NIR spectroscopy. CIGR Journal, 22(1), 162-168.

Cen, H., & He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 18, 72-83. https://doi.org/10.1016/j.tifs.2006.09.003

Chen, H., Tan, C., & Lin, Z. (2024). Geographical origin identification of ginseng using near-infrared spectroscopy coupled with subspace-based ensemble classifiers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 304. https://doi.org/10.1016/j.saa.2023.123315

Dai, S., Pan, X., Ma, L., Huang, X., Du, C., Qiao, Y., & Wu, Z. (2018). Discovery of the linear region of near infrared diffuse reflectance spectra using the Kubelka-Munk theory. Frontiers in Chemistry, 6(May), Article 154. https://doi.org/10.3389/fchem.2018.00154

Deng, G., Li, J., Liu, H., & Wang, Y. (2024). A fast method for predicting adenosine content in porcini mushrooms using Fourier transform near-infrared spectroscopy combined with regression model. LWT, 201. https://doi.org/10.1016/j.lwt.2024.116243

Fernández Pierna, J.A., Manley, M., Dardenne, P., Downey, G., & Baeten, V. (2018). Spectroscopic technique: Fourier Transform (FT) Near-Infrared Spectroscopy (NIR) and Microscopy (NIRM). Modern Techniques for Food Authentication, 103–138. https://doi.org/10.1016/b978-0-12-814264-6.00004-9

Foley, M. (2003). Application of near infrared spectroscopy to food quality and safety. CRC Press.

Gauglitz, G., & Vo-Dinh, T. (2006). Handbook of spectroscopic data of molecular beverages. Elsevier.

Gao, B., Xu, X., Han, L., & Liu, X. (2021). A novel near infrared spectroscopy analytical strategy for meat and bone meal species discrimination based on the insight of fraction composition complexity. Food Chemistry, 344. https://doi.org/10.1016/j.foodchem.2020.128645

Gowen, A.A., & O'Donnell, C.P. (2007). The use of Kubelka-Munk theory in the analysis of high scattering materials. Food Chemistry, 105(3), 1218-1226. https://doi.org/10.1016/j.foodchem.2007.01.025

Kljusurić, J.G., Jurina, T., Valinger, D., Benkovi, M., & Tušek, A.J. (2019). NIR spectroscopy and management of bioactive components, antioxidant activity, and macronutrients in fruits. Fruit Crops: Diagnosis and Management of Nutrient Constraints, 95–109. https://doi.org/10.1016/B978-0-12-818732-6.00008-3

Kokhanovsky, A. (2007). Physical interpretation and accuracy of the Kubelka–Munk theory. Journal of Physics D: Applied Physics, 40, 2210-2216. https://doi.org/10.1088/0022-3727/40/7/053

Kuk, M.L., & Jolly, C.A. (2010). Quantitative analysis of caffeine using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 18(3), 181-188.

Kumar, S., Lahlali, R., Liu, X., & Karunakaran, C. (2016). Infrared spectroscopy combined with imaging: A new developing analytical tool in health and plant science. Applied Spectroscopy Reviews, 51(6), 466-483. https://doi.org/10.1080/05704928.2016.115780

Li, Y., Logan, N., Quinn, B., Hong, Y., Birse, N., Zhu, H., Haughey, S., Elliott, C. T., & Wu, D. (2023). Fingerprinting black tea: When spectroscopy meets machine learning—a novel workflow for geographical origin identification. Food Chemistry, 438, Article 138029. https://doi.org/10.1016/j.foodchem.2023.138029

Mendes, G. de A., de Oliveira, M.A.L., Rodarte, M.P., de Carvalho dos Anjos, V., & Bell, M.J.V. (2022). Origin geographical classification of green coffee beans (Coffea arabica L.) produced in different regions of the Minas Gerais state by FT-MIR and chemometric. Current Research in Food Science, 5, 298–305. https://doi.org/10.1016/j.crfs.2022.01.017

Mehari, B., Redi-Abshiro, M., Chandravanshi, B.S., Atlabachew, M., Combrinck, S., & McCrindle, R. (2016). Simultaneous determination of alkaloids in green coffee beans from Ethiopia: Chemometric evaluation of geographical origin. Food Analytical Methods, 9(6), 1627–1637. https://doi.org/10.1007/s12161-015-0340-2

Mishra, P., Rutledge, D.N., Roger, J.M., Wali, K., & Khan, H.A. (2021). Chemometric pre-processing can negatively affect the performance of near-infrared spectroscopy models for fruit quality prediction. Talanta, 229, Article 122303. https://doi.org/10.1016/j.talanta.2021.122303

Mitchell,.R & Weller,.C. (2022). Evaluation of predictive performance of PLS regression models after being transferred from benchtop to handheld NIR spectrometers. Biosystems Engineering, 218(3-4), 245-255. https://doi.org/ 10.1016/j.biosystemseng.2022.04.014

Miller, J.C., & Miller, J.N. (2010). Statistics and chemometrics for analytical chemistry. Pearson Education.

Mohseni, M., Bastani, S., Allonas, X., Moradian, S., Ley, C., Croutxé-Barghorn, C., & Mohajerani, E. (2018). Effect of scattering nanoparticles on the curing behavior and conversion gradient of UV-curable turbid systems: two-flux Kubelka-Munk approach. Progress in Organic Coatings, 115, 65–73. https://doi.org/10.1016/j.porgcoat.2017.11.003

Mouazen, A.M., De Baerdemaeker, J., & Ramon, H. (2005). Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil & Tillage Research, 80, 171-183. https:// doi.org/10.1016/j.still.2004.03.022

Otsuka, M. (2004). Comparative particle size determination of phenacetin bulk powder by using Kubelka-Munk theory and principal component regression analysis based on near-infrared spectroscopy. Powder Technology, 141(3), 244–250. https://doi.org/10.1016/j.powtec.2004.01.025

Peiqiang, Y & Shi, H. (2017). Comparison of grating-based near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy based on spectral preprocessing and wavelength selection for the determination of crude protein and moisture content in wheat. Food Control, 82, 57-65. https://doi.org/10.1016/j.foodcont.2017.06.015

Purningsih, V., Budiastra, I.W., Sutrisno, S., & Widyotomo, S. (2018). Accuracy of NIRS method for prediction of chemical content of Bondowoso green coffee powder using Kubelka-Munk model. Jurnal Keteknikan Pertanian, 6(3), 271–278.

Rindang, A., Ayu, P.C., & Sahfitri. (2022). NIR spectroscopy as an environmentally friendly method to determine the lipid and carbohydrate concentration in Lintong Arabica coffee bean. IOP Conference Series: Earth and Environmental Science, 977(1). https://doi.org/10.1088/1755-1315/977/1/012075

Sahfitri, Rindang, A., & Ayu, P.C. (2020). Prediction of water content in Lintong green bean coffee using FT-NIRS and PLS method. IOP Conference Series: Earth and Environmental Science, 454(1), 012047. https://doi.org/10.1088/1755-1315/454/1/012047

Shan, J., Suzuki, T., Suhandy, D., Ogawa, Y., & Kondo, N. (2014). Chlorogenic acid (CGA) determination in roasted coffee beans by Near Infrared (NIR) spectroscopy. Engineering in Agriculture, Environment and Food, 7(4), 139–142. https://doi.org/10.1016/j.eaef.2014.08.003

Siregar, S.D., Rindang, A., & Ayu, P.C. (2020). Principle Component Analysis (PCA) - Classification of Arabica green bean coffee of North Sumatera Using FT-NIRS. IOP Conference Series: Earth and Environmental Science, 454(1). https://doi.org/10.1088/1755-1315/454/1/012046

Wang, X. (2019). Near-infrared spectroscopy for food quality evaluation. Evaluation Technologies for Food Quality, 105–118. https://doi.org/10.1016/B978-0-12-814217-2.00007-X

Widaningsih, R. (2022). Buku Outlook Komoditas Perkebunan Kopi. Pusat Data dan Sistem Informasi Pertanian, Sekretariat Jenderal – Kementerian Pertanian, Jakarta: 83 pp.

Wulandari, S., & Agustin, Y. (2022). Biji kopi robusta peaberry green bean : skrining fitokimia, formulasi herbal lotion. Journal of Pharmaceutical and Sciences (JPS), 5(2), 355-363. https://doi.org/10.36490/journal-jps.com.v5i2.152

Zhang, X-L., Liu, L-F., Zhu, L-Y., Bai, Y-J., Mao, Q., Li, S-L., Chen, S-L., & Xu, H-X. (2014). A high performance liquid chromatography fingerprinting and ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry chemical profiling approach to rapidly find characteristic chemical markers for quality evaluation of dispensing granules, a case study on Chuanxiong Rhizoma. Journal of Pharmaceutical and Biomedical Analysis, 88, 391-400. https://doi.org/10.1016/j.jpba.2013.09.023

Zhang, X., Li, W., Yin, B., Chen, W., Kelly, D. P., Wang, X., Zheng, K., & Du, Y. (2013). Improvement of near-infrared spectroscopic (NIRS) analysis of caffeine in roasted Arabica coffee by variable selection method of stability competitive adaptive reweighted sampling (SCARS). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 350–356. https://doi.org/10.1016/j.saa.2013.05.053

Zhu, M., Long, Y., Chen, Y., Huang, Y., Tang, L., Gan, B., Yu, Q., & Xie, J. (2021). Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics. Journal of Food Composition and Analysis, 102. https://doi.org/10.1016/j.jfca.2021.104055

Zhou, X., Li, L., Zheng, J., Wu, J., Wen, L., Huang, M., Ao, F., Luo, W., Li, M., Wang, H., & Zong, X. (2024). Quantitative analysis of key components in Qingke beer brewing process by multispectral analysis combined with chemometrics. Food Chemistry, 436, 137739. https://doi.org/10.1016/j.foodchem.2023.137739

Downloads

Published

2025-01-24

How to Cite

Setyawan, B., Arista, Y. L. V., & Utami, A. U. (2025). Chemical Content Evaluation of Peaberry Robusta Green Bean Using FT NIRS Method. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(1), 202–214. https://doi.org/10.23960/jtep-l.v14i1.202-214