Microencapsulation of probiotic lactic acid bacteria using freeze-drying with isolated whey protein and trehalose as coating material [Mikroenkapsulasi bakteri asam laktat probiotik menggunakan pengeringan beku dengan protein whey isolat dan trehalosa sebagai material pelapis]

Authors

DOI:

https://doi.org/10.23960/jtihp.v29i2.168-175
Abstract View: 994

Keywords:

bacteria, Bifidobacterium breve, microencapsulation, probiotic lactic acid

Abstract

Microencapsulation could be employed to coat bacteria with protective compounds to enhance their viability. The freeze-drying method uses low temperatures, thereby reducing heat damage. Bifidobacterium breve was used as a probiotic along with Streptococcus thermophilus and Lactobacillus bulgaricus, two common yogurt cultures. Yogurt, a nutrient-rich milk product, has the potential to be an effective probiotic carrier. This research aimed to examine how the freeze-drying process with varying ratios of coating materials affects the viability of the bacteria combination B. breve, S. thermophilus, and L. bulgaricus under acidic and bile salt conditions, as well as the microencapsulation efficiency and particle size. The treatments tested different ratios of whey protein isolate to trehalose as a coating (1:1, 1.5:1, 2:1, 2.5:1, 3:1). The 1:1 ratio yielded the best results, with lactic acid bacteria counts of 6.60 log colony/mL at pH 2.0, 6.84 log colony/mL at pH 3.0, 7.39 log colony/mL at pH 4.0, 7.47 log colony/mL at pH 5.0, 7.70 log colony/mL at pH 6.0, and 7.05 log colony/mL in a bile salt environment. This ratio demonstrated 107.96% microencapsulation efficiency and a particle size of 9.66 μm.


Downloads

Download data is not yet available.

Author Biography

Adolf Jan Nexson Parhusip, Universitas Pelita Harapan

Teknologi Pangan

References

Aragón-Rojas, S., Quintanilla-Carvaja, M.X., & Hernández-Sánchez, H. (2018). multifunctional role of the whey culture medium in the spray drying microencapsulation of lactic acid bacteria. Food Technology & Biotechnology, 56(3), 381-397. https://doi.org/10.17113/ftb.56.03.18.5285

Bora, M.A.F., Li, X., Zhu, Y., & Du, L. (2018). Improved viability of microencapsulated probiotics in a freeze-dried banana powder during storage and under simulated gastrointestinal tract. Probiotics and Antimicrobial Proteins, 11(4), 1330-1339. https://doi.org/10.1007/s12602-018-9464

Burton, E., Arief, I.I., & Taufik, E. (2014). Formulasi yoghurt probiotik karbonasi dan potensi sifat fungsionalnya. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan, 2(1), 213-218. https://journal.ipb.ac.id/index.php/ipthp/article/view/15568

Cukrowska, B., Bierła, J.B., Zakrzewska, M., Klukowski, M., & Maciorkowska, E. (2020) The relationship between the infant gut microbiota and allergy. The role of bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life. Nutrients, 12(4), 946. https://doi.org/10.3390/nu12040946

Jalali M., Abedi, D., Varshosaz, J., Najjarzadeh, M., Mirlohi, M., & Tavakoli, N. (2012). Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobcaillus delbrueckii subsp. bulgaricus in oral capsules. Research in Pharmaceutical Sciences, 7(1), 31-36. https://pubmed.ncbi.nlm.nih.gov/23181077/

Jouki, M., Khazaei, N., Rezae,i F., & Taghavian-Saeid R. (2021). Production of synbiotic freeze-dried yoghurt powder using microencapsulation and cryopreservation of L. plantarum in alginate-skim milk microcapsules. International Dairy Journal, 122, 105133. https://doi.org/10.1016/j.idairyj. 2021.105133

Kamara, D.S., Rachman, S.D., Pasisca, R.W., Djajasoepana, S., Suprijana, O., Idar, I., & Ishmayana, S. (2016). Pembuatan dan aktivitas antibakteri yogurt hasil fermentasi tiga bakteri (Lactobacillus bulgaricus, Streptococcus thermophilus, Lactobacilus acidophilus). Al-Kimia, 4(2), 121-131. https://doi.org/10.24252/al-kimia.v4i2.1680

Koh, W.Y., Lim, X.X., Tan, T.C., Kobun, R., & Rasti, B. (2022). Encapsulated probiotics: Potential techniques and coating materials for non-dairy food applications. Applied Sciences, 1, 1-31. https://doi.org/10.3390/app121910005

Lang, F., Wen, J., Wu, Z., Pan, D., dan Wang, L. 2022. Evaluation of probiotic yoghurt by the mixed culture with Lactobacillus plantarum A3. Food Science and Human Wellness, 11(2),323-331. doi:10.1016/j.fshw.2021.11.006

Li, M., Jin, Y., Wang, Y., Meng, L., Zhang, N., Sun, Y., Hao, .J, Fu, Q., & Sun, Q. (2019). Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. Journal of Dairy Science, 102(6), 4832-4843. http://dx.doi.org/10.3168/jds.2018-15597

Men, D.T., Le, P.T., Tuan, T.V., Lan, N.T.T, & Huyen, N.T.M. (2020). Isolation and identification of Bifidobacterium spp. from infant intestinal tract. Vietnamese Journal of Food Control, 3(2), 125-132. https://vjfc.nifc.gov.vn/ajax/research/getfile?filecode=ec631a87-0cb9-459b-bd07-8abf724a 6d6a

Meybodi, N.M., Mortazavian, A.M., Arab, M., & Nematollahi, A. (2020). Probiotic viability in yoghurt: A review of influential factors. International Dairy Journal, 109, 104793. https://doi.org/10.1016/ j.idairyj.2020.104793

Rizal, S., Erna, M., Nurainy, F., & Tambunan, A.R. (2016). Karakteristik probiotik minuman fermentasi laktat sari buah nanas dengan variasi jenis bakteri asam laktat. Jurnal Kimia Terapan Indonesia, 18(1), 63-71, https://doi.org/10.14203/jkti.v18i01.41

Salihu, M.B., Kryeziu, T.K., Nebija, D., Behzadi, S.S., Viernstein, H., & Mueler, M. (2019). Prebiotics as excipients for enhancement of stability and functionality of Bifidobacterium longum ssp. infantis with potential application as symbiotics in food and pharmaceuticals. Pharmazie, 74(6):326-333. doi: 10.1691/ph.2019.9007. PMID: 31138368.

Santos, G., Nunes, T.P., Silva, M.A.A.P., Rosenthal, A., & Pagani, A,A,C. (2018). Development and acceptance of freeze-dried yoghurt “Powder Yoghurt”. International Food Research Journal, 25(3), 1159-1165. http://www.ifrj.upm.edu.my/25_(03)_2018/(38).pdf

Sensoy, I. A. (2021). Eeview on the food digestion in the digestive tract and the used in vitro models. Current Research in Food Science, 4, 308-319. https://doi.org/10.1016/j.crfs.2021.04.004

Siregar, T.M., & Kristanti, C. (2019). Mikroenkapsulasi senyawa fenolik ekstrak daun kenikir (Cosmos caudatus K.). Jurnal Aplikasi Teknologi Pangan, 8(1), 31-37. https://doi.org/10.17728/jatp.3304

Soesetyaningsih, E., & Azizah. (2020). Akurasi perhitungan bakteri pada daging sapi menggunakan metode hitung cawan. Berkala Sainstek, 8(3), 75-79. https://doi.org/10.19184/bst.v8i3.16828

Sun, H., Zhang, M., Liu, Y., Wang, Y., Chen, Y., Guan, W., Li, X., & Wang, Y. (2021). Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze-drying. Carbohydrate Polymers, 260, 117843. https://doi.org/10.1016/j.carbpol. 2021.117843

Sutandi, A., Haryanto, & Kusumawati, E. (2022). Viability of Lactobacillus bulgaricus and Streptococcus thermophilus in encapsulated probiotic candy with freeze-dry method. Scientiae Educatia: Jurnal Pendidikan Sains, 11(1), 33-40. https://doi.org/10.24235/sc.educatia.v11i1.10159

Tušar, T., Žerdoner, K., Matijašić, B.B., Paveljšek, Benedik, E., Bratanič, B., Fidler, N., & Rogelj, I. (2014) Cultivable bacteria from milk from Slovenian breastfeeding mothers. Food Technology and Biotechnology, 52(2), 242-247. https://hrcak.srce.hr/file/180893

Urdaneta, V., & Casadesús, J. (2017). Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Frontiers in Medicine, 4(163), 1-13. https://doi.org/10.3389/fmed.2017.00163

Vitheejongjaroen, P., Kanthawang, P., Loison, F., Jaisin, Y., Pachekrepapol. U., dan Taweechotipatr. 2021. Antioxidant activity of Bifidobacterium animalis MSMC83 and its application in set-style probiotic yoghurt. Food Bioscience, 43,1-9. doi:10.1016/j.fbio.2021.101259.

Wagner, J., Biliaderis, C.G., & Moschakis, T. (2019). Whey proteins: Musings on denaturation, aggregate formation and gelation. Critical Reviews in Food Science and Nutrition, 60(22), 3793-3806 https://doi.org/10.1080/10408398.2019.1708263

Wang, C., Wang, M., Wang, H., Sun, X., Guo, M., & Hou, J. (2019). Effects of polymerized whey protein on survivability of Lactobacillus acidophilus la-5 during freeze-drying. Food Science & Nutrition, 7, 2708-2715. https://doi.org/10.1002/fsn3.1130

Wang, L., Vuletic, I., Deng, D., Crielaard, W., Xie, Z., Zhou, K., Zhang, J., Sun, H., Ren, Q., & Guo, C. (2017). Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo. Gene Therapy, 24(11), 699-705. https://doi.org/10.1038/ gt.2017.74

Yao, M., Xie, J., Du, H., McClements, D.J., Xiao, H., & Li, L. (2020). Progress of microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 1-18. https://doi.org/10.1111/1541-4337.12532

Downloads

Published

2024-08-09

How to Cite

Parhusip, A. J. N. (2024). Microencapsulation of probiotic lactic acid bacteria using freeze-drying with isolated whey protein and trehalose as coating material [Mikroenkapsulasi bakteri asam laktat probiotik menggunakan pengeringan beku dengan protein whey isolat dan trehalosa sebagai material pelapis]. Jurnal Teknologi &Amp; Industri Hasil Pertanian, 29(2), 168–175. https://doi.org/10.23960/jtihp.v29i2.168-175