Effect of Activated Carbon from Coconut Shells on Ammonia Concentration in Laying Hen Manure

Urfiana Sara, Muhammad Azhar, Muhammad Irfan Aryawiguna, Musarianto Musarianto, Muhammad Iqbal Risanta

Abstract


This research aimed to determine the response of activated carbon from coconut shells to releasing ammonia in the manure of laying hens. Thirty-six 70-week-old Isa Brown strain laying hens were utilized for each treatment in this investigation.  The manure was collected in the morning.  A total of 50 grams of laying hen manure were gathered. Activated carbon is then sprinkled over the collected manure. Activated carbon-sprinkled manure is kept for seven days. Activated carbon application was split into four treatments. The coconut shells-activated carbon (K) treatments were applied at doses of 0%, 10%, 20%, and 30%. The measurements include shrinkage, pH, ammonia levels, and a manure smell test. The results of this study indicate that adding different amounts of activated carbon made from coconut shells to laying hens' manure can increase shrinkage, lower pH and ammonia levels, and mask the smell of the manure—especially when using 20% Coconut Shells-Activated Carbon (K2). Based on these findings, applying 20% activated carbon derived from coconut shells is recommended for optimal manure management.

Keywords


Activated carbon; Ammonia levels; Coconut shells; Laying Hens

Full Text:

PDF

References


Akbar, A., Soemarko, D. S., & Yunus, F. (2021). Correlation of Asthma with Ammonia Exposure and Other Risk Factors among Poultry Farmers. The Indonesian Journal of Community and Occupational Medicine, 1(2), 56–62. https://doi.org/https://doi.org/10.53773/ijcom.v1i2.6.56-62

Alaqarbeh, M., Al, P., & Abdullah, H. Bin. (2021). Adsorption Phenomena: Definition, Mechanisms, and Adsorption Types: Short Review. RHAZES: Green and Applied Chemistry, 13, 43–51. https://doi.org/10.48419/IMIST.PRSM/rhazes-v13.28283

Ambarsari, H., Suryati, T., Akhadi, D. H., Herlina, S., Hanifah, I., Hendrawati, Andriyani, R., Gafur, N. A., & Suyanti, S. (2023). The effectiveness of coconut shell charcoal and activated carbon on deodorization of sludge from ice cream industry WWTP. IOP Conference Series: Earth and Environmental Science, 1201(1). https://doi.org/10.1088/1755-1315/1201/1/012016

Bai, W., Qian, M., Li, Q., Atkinson, S., Tang, B., Zhu, Y., & Wang, J. (2021). Rice husk-based adsorbents for removing ammonia: Kinetics, thermodynamics and adsorption mechanism. Journal of Environmental Chemical Engineering, 9(4), 105793. https://doi.org/10.1016/j.jece.2021.105793

Bist, R. B., Subedi, S., Chai, L., & Yang, X. (2022). Ammonia Emissions, Impacts, and Mitigation Strategies for Poultry Production: A Critical Review. Journal of Environmental Management, 328(2), 1–14. https://doi.org/10.1016/j.jenvman.2022.116919

Bleizgys, R., & Naujokienė, V. (2023). Ammonia Emissions from Cattle Manure under Variable Moisture Exchange between the Manure and the Environment. Agronomy, 13(6). https://doi.org/10.3390/agronomy13061555

Chai, L. (2022). Importance of Layer Manure Drying. In UGA Poultry Science (pp. 1–5).

Combs, S., Hoskins, B., Jarman, J., Kovar, J., Watson, M., Wolf, A., & Wolf, N. (2003). Recommended Methods of Manure Analysis. Cooperative Extension Publishing.

Dari, B., Rogers, C. W., & Walsh, O. S. (2019). Understanding Factors Controlling Ammonia Volatilization from Fertilizer Nitrogen Applications. In University of Idaho Extension (pp. 1–4).

Direktorat Jenderal Peternakan dan Kesehatan Hewan. (2023). Statistik Peternakan dan Kesehatan Hewan 2023. Direktorat Jenderal Peternakan Dan Kesehatan Hewan Kementerian Pertanian, 2(ISSN 2964-1047), 1–278.

EDGAR. (2015). Edgar - emissions database for global atmospheric research. Global Air Pollutant Emissions - EDGAR v5.0. . EDGAR - Emissions Database for Global Atmospheric Research; EDGAR. https://edgar.jrc.ec.europa.eu/gallery?release=v50_AP&substance=NH3&sector=TOTALS

Eglite, S., Ilgaza, A., & Butka, M. (2021). Reduction of ammonia emissions by applying probiotics on litter in a commercial breeding poultry house. Agronomy Research, 19(Special Issue 2), 1015–1022. https://doi.org/10.15159/AR.21.069

Faisyah, A. F., Ardillah, Y., & Putri, D. A. (2020). Ammonia Exposure Among Citizen Living Surrounding Fertilizer Factory. Advances in Health Sciences Research, 25, 155–158. https://doi.org/10.2991/ahsr.k.200612.020

Fatimah, S., & Azinuddin, Y. R. (2022). The Adsorption Performance and Characterization of Activated Charcoal of Bone Char Against Acid Orange 7. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 7(3), 303. https://doi.org/10.20961/jkpk.v7i3.66556

Ganjoo, R., Sharma, S., Kumar, A., & Daouda, M. M. A. (2023). Activated Carbon: Fundamentals, Classification, and Properties. In Activated Carbon (pp. 1–22). The Royal Society of Chemistry. https://doi.org/10.1039/bk9781839169861-00001

Hagenkamp-Korth, F., Haeussermann, A., Hartung, E., & Reinhardt-Hanisch, A. (2015). Reduction of ammonia emissions from dairy manure using novel urease inhibitor formulations under laboratory conditions. Biosystems Engineering, 130, 43–51. https://doi.org/10.1016/j.biosystemseng.2014.12.002

Hanusová, A. (2016). The Use of Filtration Materials to Remove Ammonia from Water / Využitie Filtračných Materiálov Na Odstraňovanie Amoniaku Z Vody. GeoScience Engineering, 60(4), 29–38. https://doi.org/10.1515/gse-2015-0004

Harihastuti, N., Djayanti, S., & Sari, I. R. J. (2021). Dry filtration technology application with activated carbon media to remove odor ammonia emissions from production process feed mill industry. IOP Conference Series: Earth and Environmental Science, 896(1). https://doi.org/10.1088/1755-1315/896/1/012047

Hidayat, C., Purwanti, S., Komarudin, & Rahman. (2021). Reducing air pollution from broiler farms. IOP Conference Series: Earth and Environmental Science, 788(1). https://doi.org/10.1088/1755-1315/788/1/012150

Imam, S., Tri Hertamawati, R., Anwar, S., Prasetyo, B., Budi Kusuma, S., Hariono, B., Kautsar, S., & Rachmanita, R. E. (2022). Design of an exhaust fan with activated charcoal in a broiler closed houses for ammonia gas mitigation. SNRU Journal of Science and Technology, 14(3), 247352. https://doi.org/10.55674/snrujst.v14i3.247352

Ketwong, T., Douglas, C., Sitthiseree, S., Khembubpha, A., & Areeprasert, C. (2019). Activated Carbon Production from Coconut Shell Charcoal Employing Steam and Chemical Activation for Ammonia Adsorption Application. Proceedings of the World Congress on Engineering and Computer Science. https://doi.org/https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083383845&partnerID=40&md5=e2b06349fbe18e789f4840817285e5f9

Kristiana, I., Akbarurrasyid, M., Aditya, E., Politeknikkelautan, P., Perikananpangandaran, D., & Raya Babakan, J. (2020). The Characteristic of Physicochemical, Chemical and Organoleptic Gelatin: Stingray (DasyatisSp) and Unicorn Leatherjacket (Aluterusmonoceros) Skin. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 11(5), 14–24. https://doi.org/10.33887/rjpbcs/2020.11.5.3

Latshaw, J. D., & Zhao, L. (2011). Dietary protein effects on hen performance and nitrogen excretion. Poultry Science, 90(1), 99–106. https://doi.org/10.3382/ps.2010-01035

Marang, E. A. F., Mahfudz, L. D., Sarjana, T. A., & Setyaningrum, S. (2019). Kualitas dan Kadar Amonia Litter Akibat Penambahan Sinbiotik dalam Ransum Ayam Broiler. Jurnal Peternakan Indonesia (Indonesian Journal of Animal Science), 21(3), 303. https://doi.org/10.25077/jpi.21.3.303-310.2019

Masterson, B. (2013). Conway’s Microdiffusion Analysis: eighty years on and still counting! Biochemical Journal, 34–39. https://doi.org/https://doi.org/10.1042/BIO03601034

Mead, R., Curnow, R. N., & Hasted, A. M. (2011). Statistical Methods in Agriculture and Experimental Biology (Third). CRCPress.

Mohammed-Nour, A., Al-Sewailem, M., & El-Naggar, A. H. (2019). The influence of alkalization and temperature on Ammonia recovery from cow manure and the chemical properties of the effluents. Sustainability (Switzerland), 11(8). https://doi.org/10.3390/su11082441

Najib, N. N., Nugroho, H. Y. S. H., Isnan, W., & Saad, M. (2023). Effect of size and additives on the decomposition process and nutrient content of urban organic waste compost. IOP Conference Series: Earth and Environmental Science, 1180(1). https://doi.org/10.1088/1755-1315/1180/1/012043

Naujokienė, V., Bagdonienė, I., Bleizgys, R., & Rubežius, M. (2021). A biotreatment effect on dynamics of cattle manure composition and reduction of ammonia emissions from agriculture. Agriculture (Switzerland), 11(4), 1–19. https://doi.org/10.3390/agriculture11040303

Pan, B., Lam, S. K., Mosier, A., Luo, Y., & Chen, D. (2016). Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems and Environment, 232, 283–289. https://doi.org/10.1016/j.agee.2016.08.019

Park, J. E., Jo, E. S., Lee, G. B., Lee, S. E., & Hong, B. U. (2023). Adsorption Capacity and Desorption Efficiency of Activated Carbon for Odors from Medical Waste. Molecules, 28(2). https://doi.org/10.3390/molecules28020785

Saleem, J., Bin Shahid, U., Hijab, M., Mackey, H., & McKay, G. (2019). Production and applications of activated carbons as adsorbents from olive stones. Biomass Conversion and Biorefinery, 9, 775–802.

https://doi.org/10.1007/s13399-019-00473-7/Published

Tawfik, A., Eraky, M., Osman, A. I., Ai, P., Zhou, Z., Meng, F., & Rooney, D. W. (2023). Bioenergy production from chicken manure: a review. In Environmental Chemistry Letters (Vol. 21, Issue 5, pp. 2707–2727). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-023-01618-x

Tonu Lema, A., Sabuna, C., & Balu, Y. W. (2022). Optimization and Kinetic Study of Ende-Natural Zeolite as Candidates of Ammonia Adsorbent on Broiler Chicken Litter. KOVALEN: Jurnal Riset Kimia, 8(2), 150–157. https://doi.org/10.22487/kovalen.2022.v8.i2.15914

Utami, M. M. D., Sutirtoadi, A., Jawawi, A. J. A., & Dewi, A. C. (2020). Evaluation of the quality of organic fertilizer on different ratio of cow manure and laying hens manure. IOP Conference Series: Earth and Environmental Science, 411(1). https://doi.org/10.1088/1755-1315/411/1/012034

Wang, N., Huang, D., Shao, M., Sun, R., & Xu, Q. (2022). Use of activated carbon to reduce ammonia emissions and accelerate humification in composting digestate from food waste. Bioresource Technology, 347, 126701. https://doi.org/10.1016/J.BIORTECH.2022.126701

Wardah, & Sihmawati, R. R. (2020). Penurunan emisi gas amoniak dalam kandang melalui pemberian fitobiotik pada ayam broiler periode finisher. Seminar Nasional Konsorsium Untag Indonesia, 340–351.

Wyer, K. E., Kelleghan, D. B., Blanes-Vidal, V., Schauberger, G., & Curran, T. P. (2022). Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. Journal of Environmental Management, 323(June 2021), 116285. https://doi.org/10.1016/j.jenvman.2022.116285

Zhang, M., Li, Y., Si, H., Wang, B., & Song, T. (2017). Preparation and electrochemical performance of coconut shell activated carbon produced by the H3PO4 activation with rapid cooling method. International Journal of Electrochemical Science, 12(8), 7844–7852. https://doi.org/10.20964/2017.08.37

Zubair, M., Wang, S., Zhang, P., Ye, J., Liang, J., Nabi, M., Zhou, Z., Tao, X., Chen, N., Sun, K., Xiao, J., & Cai, Y. (2020). Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. Bioresource Technology, 301(October 2019), 122823. https://doi.org/10.1016/j.biortech.2020.122823




DOI: http://dx.doi.org/10.23960/jipt.v13i2.p449-461

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 ACCREDITATION 

 

 Web
Analytics View My Stats

 

Flag Counter

   

PUBLISHER: 

DEPARTMENT OF ANIMAL HUSBANDRY, FACULTY OF AGRICULTURE, UNIVERSITY OF LAMPUNG

Soemantri Brojonegoro 1, Gedong Meneng, Rajabasa, Bandar Lampung, Lampung Province, Indonesia (Postal Code : 35145)

email : jipt@fp.unila.ac.id

 

Lisensi Creative Commons
JURNAL ILMIAH PETERNAKAN TERPADU is licensed under a Creative Commons Attribution 4.0 International License