NONTHERMAL PLASMA: A REVIEW ON ITS PROSPECTS ON FOOD PROCESSING

Gede Arda, Chuang Liang Hsu

Abstract


Bringing plasma into food processing is a relatively new measure for food engineer and scientist. It is simple in generation, low energy requirement, high efficacy, and easy to apply, pave its way to be a new prospective scenario in processing more safety food recently. Plasma is the fourth matter after solid, liquid and gas contain various reactive species generated by electrical discharge from 10-120kV. Those are Reactive Oxygen and Nitrogen (RONS) comprising various reactive species including nitric oxide (NO), superoxide (O2-), hydrogen peroxide (H2O2); singlet oxygen (1O2); ozone (O3) and even hydroxyl radical (-OH) which can and do play important roles in biological systems. This brief review describes plasma interaction with the biological system and pesticides compound and sums up some finding on the nonthermal application on two main consideration of food safety namely microorganisms decontamination and pesticides residue degradation.

Full Text:

PDF

References


Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11(11), 115020. https://doi.org/10.1088/1367-2630/11/11/115020

Dröge, W. (2002). Free Radicals in the Physiological Control of Cell Function. Physiological Reviews, 82(1), 47–95. https://doi.org/10.1152/physrev.00018.2001

Food, & Organization, A. (1986). International code of conduct on the distribution and use of pesticides. na.

Frederickson Matika, D. E., & Loake, G. J. (2014). Redox Regulation in Plant Immune Function. Antioxidants & Redox Signaling, 21(9), 1373–1388. https://doi.org/10.1089/ars.2013.5679

Jeyaratnam, J. (1990). Acute pesticide poisoning: A major global health problem.

Kaushik, G., Satya, S., & Naik, S. N. (2009). Food processing a tool to pesticide residue dissipation – A review. Food Research International, 42(1), 26–40. https://doi.org/10.1016/j.foodres.2008.09.009

Kjellander, J., & Nygren, B. (1957). B. cereus och fodoamnen. Nord Hyg, 38, 36–45.

Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., & Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75, 83–91. https://doi.org/10.1016/j.foodcont.2016.12.021

Ling, Y., Wang, H., Yong, W., Zhang, F., Sun, L., Yang, M.-L., … Chu, X.-G. (2011). The effects of washing and cooking on chlorpyrifos and its toxic metabolites in vegetables. Food Control, 22(1), 54–58. https://doi.org/10.1016/j.foodcont.2010.06.009

Lu, X., Naidis, G. V., Laroussi, M., Reuter, S., Graves, D. B., & Ostrikov, K. (2016). Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 630, 1–84. https://doi.org/10.1016/j.physrep.2016.03.003

Lu, XinPei, Ye, T., Cao, Y., Sun, Z., Xiong, Q., Tang, Z., … Pan, Y. (2008). The roles of the various plasma agents in the inactivation of bacteria. Journal of Applied Physics, 104(5), 053309. https://doi.org/10.1063/1.2977674

Magee, R. J. (1964). Pesticide Literature and Pesticide Research. Journal of Chemical Documentation, 4(4), 195–196. https://doi.org/10.1021/c160015a001

Misra, N.N., Pankaj, S. K., Walsh, T., O’Regan, F., Bourke, P., & Cullen, P. J. (2014). In-package nonthermal plasma degradation of pesticides on fresh produce. Journal of Hazardous Materials, 271, 33–40. https://doi.org/10.1016/j.jhazmat.2014.02.005

Misra, N.N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J. P., Keener, K. M., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125, 131–138. https://doi.org/10.1016/j.jfoodeng.2013.10.023

Misra, Nrusimha Nath, Keener, K. M., Bourke, P., Mosnier, J.-P., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering, 118(2), 177–182. https://doi.org/10.1016/j.jbiosc.2014.02.005

Moisan, M., Barbeau, J., Crevier, M.-C., Pelletier, J., Philip, N., & Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and Applied Chemistry, 74(3), 349–358. https://doi.org/10.1351/pac200274030349

Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies, 44, 235–241. https://doi.org/10.1016/j.ifset.2017.02.012

Schnabel, U., Niquet, R., Schlüter, O., Gniffke, H., & Ehlbeck, J. (2015). Decontamination and Sensory Properties of Microbiologically Contaminated Fresh Fruits and Vegetables by Microwave Plasma Processed Air (PPA): Decontamination and Sensory of Food By Plasma. Journal of Food Processing and Preservation, 39(6), 653–662. https://doi.org/10.1111/jfpp.12273

Zhou, R., Zhou, R., Yu, F., Xi, D., Wang, P., Li, J., … Ostrikov, K. (Ken). (2018). Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chemical Engineering Journal, 342, 401–409. https://doi.org/10.1016/j.cej.2018.02.107

Ziuzina, D., & Misra, N. N. (2016). Cold Plasma for Food Safety. In Cold Plasma in Food and Agriculture (pp. 223–252). https://doi.org/10.1016/B978-0-12-801365-6.00009-3




DOI: http://dx.doi.org/10.23960/jtep-l.v9i1.48-54

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Gede Arda, Chuang Liang Hsu

Web
Analytics JTEP Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.