Investigasi pengaruh pengenceran sampel madu pada proses klasifikasi madu menggunakan uv spectroscopy dan kemometrika [Investigation on the influence of dilution of honey samples for honey classification using uv spectroscopy and chemometrics]

Diding Suhandy, Meinilwita Yulia, Kusumiyati Kusumiyati, Siti Suharyatun, Sri Waluyo


One form of honey adulteration is label adulteration for some premium honey such as uniflora honey from the honeybee species Trigona sp. One of the analytical methods that are currently developing and have the potential to perform the classification of premium honey in Indonesia is the UV spectroscopy method. In this study, an investigation was carried out on the effect of dilution on the performance of UV spectroscopy in the process of classifying Indonesian honey with different honeybees. A total of 4 types of honey samples with 10 samples each were used in this study. The honey sample was then diluted using distilled water. Each type of honey was given two dilution treatments, namely 1:20 (volume: volume) dilution of 5 samples and 1:40 (volume: volume) dilution of 5 samples. Spectral data were taken using a UV-visible spectrometer with a wavelength of 190-1100 nm (Genesys™ 10S UV-Vis, Thermo Scientific, USA) using the transmittance mode. The results of spectra analysis generally show that the sample with a 1:20 dilution has a higher absorbance intensity for both the original and modified spectra. The PCA results for each dilution showed that the honey samples could be separated into four different clusters for both 1:20 and 1:40 dilutions. The results of PCA analysis using all samples showed that the honey samples were classified into eight different clusters showing a significant effect of differences in honey sample dilution on the classification process of honey samples based on differences in the types of honeybees.


klasifikasi; lebah tak bersengat; pca; pengenceran; uv-spectroscopy

Full Text:



Ali, H., Khan, S., Ullah, R., & Khan, B. (2020). Fluorescence fingerprints of Sidr honey in comparison with uni/polyfloral honey samples. European Food Research and Technology, 246(9), 1829–1837.

Amin, F. A. Z., Sabri, S., Mohammad, S. M., Ismail, M., Chan, K. W., Ismail, N., Norhaizan, M. E., & Zawawi, N. (2018). Therapeutic properties of stingless bee honey in comparison with european bee honey. Advances in Pharmacological Sciences, 2018.

Beitlich, N., Koelling-Speer, I., Oelschlaegel, S., & Speer, K. (2014). Differentiation of manuka honey from kanuka honey and from jelly bush honey using HS-SPME-GC/MS and UHPLC-PDA-MS/MS. Journal of Agricultural and Food Chemistry, 62(27), 6435–6444.

Da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323.

Dimitrova, B., Gevrenova, R., & Anklam, E. (2007). Analysis of phenolic acids in honeys of different floral origin by solid-phase extraction and high-performance liquid chromatography. Phytochemical Analysis, 18(1), 24–32.

El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2), 279–287.

Frausto-Reyes, C., Casillas-Peñuelas, R., Quintanar-Stephano, J. L., Macías-López, E., Bujdud-Pérez, J. M., & Medina-Ramírez, I. (2017). Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 178, 212–217.

Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., & Severcan, F. (2015). Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chemistry, 170, 234–240.

He, C., Liu, Y., Liu, H., Zheng, X., Shen, G., & Feng, J. (2020). Compositional identification and authentication of Chinese honeys by 1H NMR combined with multivariate analysis. Food Research International, 130, 108936.

Hossen, M. S., Ali, M. Y., Jahurul, M. H. A., Abdel-Daim, M. M., Gan, S. H., & Khalil, M. I. (2017). Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharmacological Reports, 69(6), 1194–1205.

Hu, L., Ma, S., & Yin, C. (2018). Discrimination of geographical origin and detection of adulteration of kudzu root by fluorescence spectroscopy coupled with multi-way pattern recognition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 193, 87–94.

Hu, L., Yin, C., Ma, S., & Liu, Z. (2019). Vis-NIR spectroscopy Combined with Wavelengths Selection by PSO Optimization Algorithm for Simultaneous Determination of Four Quality Parameters and Classification of Soy Sauce. Food Analytical Methods, 12(3), 633–643.

Joliffe, I. T., & Morgan, B. (1992). Principal component analysis and exploratory factor analysis. Statistical Methods in Medical Research, 1(1), 69–95.

Kasprzyk, I., Depciuch, J., Grabek-Lejko, D., & Parlinska-Wojtan, M. (2018). FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control, 84, 33–40.

Lin, B., Loomes, K. M., Prijic, G., Schlothauer, R., & Stephens, J. M. (2017). Lepteridine as a unique fluorescent marker for the authentication of manuka honey. Food Chemistry, 225, 175–180.

Nickless, E. M., Holroyd, S. E., Stephens, J. M., Gordon, K. C., & Wargent, J. J. (2014). Analytical FT-Raman spectroscopy to chemotype Leptospermum scoparium and generate predictive models for screening for dihydroxyacetone levels in floral nectar . Journal of Raman Spectroscopy, 45(10), 890–894.

Rao, P. V., Krishnan, K. T., Salleh, N., & Gan, S. H. (2016). Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Revista Brasileira de Farmacognosia, 26(5), 657–664.

Sousa, M. E. B. C., Dias, L. G., Veloso, A. C. A., Estevinho, L., Peres, A. M., & Machado, A. A. S. C. (2014). Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue. Talanta, 128, 284–292.

Spiteri, M., Rogers, K. M., Jamin, E., Thomas, F., Guyader, S., Lees, M., & Rutledge, D. N. (2017). Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania. Food Chemistry, 217, 766–772.

Suhandy, D., & Yulia, M. (2017). Peaberry coffee discrimination using UV-visible spectroscopy combined with SIMCA and PLS-DA. International Journal of Food Properties, 20(March), S331–S339.

Suhandy, D., & Yulia, M. (2019a). Potential application of UV-visible spectroscopy and PLS-DA method to discriminate Indonesian CTC black tea according to grade levels. IOP Conference Series: Earth and Environmental Science, 258(1).

Suhandy, D., & Yulia, M. (2019b). Pengantar Ilmu Spektroskopi untuk Pertanian (1st ed.). Graha Ilmu.

Suhandy, D., & Yulia, M. (2020). Teknologi Near Infrared Spectroscopy Portabel Untuk Kuantifikasi Atribut Mutu Buah-Buahan (1st ed.). Graha Ilmu.

Vit, P., Roubik, D. W., & Pedro, S. R. M. (2012). Pot-Honey: A legacy of stingless bees. In Pot-Honey: A Legacy of Stingless Bees (pp. 1–654).

Wilczyńska, A., & Żak, N. (2020). The use of fluorescence spectrometry to determine the botanical origin of filtered honeys. Molecules, 25(6).

Yang, X., Guang, P., Xu, G., Zhu, S., Chen, Z., & Huang, F. (2020). Manuka honey adulteration detection based on near-infrared spectroscopy combined with aquaphotomics. Lwt, 132, 109837.

Yulia, M., & Suhandy, D. (2017). Indonesian palm civet coffee discrimination using UV-visible spectroscopy and several chemometrics methods. Journal of Physics: Conference Series, 835(1).

Zuccato, V., Finotello, C., Menegazzo, I., Peccolo, G., & Schievano, E. (2017). Entomological authentication of stingless bee honey by 1H NMR-based metabolomics approach. Food Control, 82, 145–153.



  • There are currently no refbacks.