Aktivitas antidiabetes dan antioksidan pati jagung yang dikonjugasi dengan katekin [Antidiabetic and antioxidant activities of catechin conjugated corn starch]

Authors

  • Samsu Udayana Nurdin (Scopus ID: 57193847315) Department of Agricultural Product Technology, Faculty of Agriculture, Lampung University http://orcid.org/0000-0003-0690-6375
  • Siti Restia Salita Lampung University
  • Celly Oktaviani Lampung University
  • Subeki Subeki Lampung University
  • Novita Herdiana Lampung University

DOI:

https://doi.org/10.23960/jtihp.v28i2.129-139
Abstract View: 703

Keywords:

Catechin, modified starch, antidiabetic, antioxidant, Free radical grafting

Abstract

High levels of carbohydrate consumption, especially starch, are considered to be an important risk factor for diabetes mellitus (DM). Conjugation of starch with phenolic compounds those have antidiabetic activity such as catechin is suggested increase health benefit of the starch.  Objective of this research was to find out optimal catechin concentration that was able to be conjugated into corn starch to produce conjugated starch with high antidiabetic and antioxidant properties. The synthesis of starch-catechin conjugates used free-radical grafting (FRG) by adding different concentration of catechin, namely 0%, 0,5%; 1%; 1,5%; and 2%. The result of the research indicates that increasing of catechin concentration grafted into starch increase the phenolic content of the starch. Conjugation of catechin into starch posed higher antidiabetic and antioxidant activities. Starch conjugated with 2.0% catechin had the best antidiabetic and antioxidant activities, therefore, it had potentiality to develop as functional starch for diabetes patients.

Downloads

Download data is not yet available.

Author Biography

Samsu Udayana Nurdin, (Scopus ID: 57193847315) Department of Agricultural Product Technology, Faculty of Agriculture, Lampung University

References

Abdelli, I., Benariba, N., Adjdir, S., Fekhikher, Z., Daoud, I., Terki, M., Benramdane, H., & Ghalem, S. (2021). In silico evaluation of phenolic compounds as inhibitors of Α-amylase and Α-glucosidase. Journal of Biomolecular Structure & Dynamics, 39(3), 816–822. https://doi.org/10.1080/07391102.2020.1718553

Ademiluyi, A. O., Oboh, G., Ogunsuyi, O. B., & Oloruntoba, F. M. (2016). A comparative study on antihypertensive and antioxidant properties of phenolic extracts from fruit and leaf of some guava (Psidium guajava L.) varieties. Comparative Clinical Pathology, 25(2), 363–374. https://doi.org/10.1007/S00580-015-2192-Y

Agrawal, N., Sharma, M., Singh, S., & Goyal, A. (2022). Recent advances of α-glucosidase inhibitors: a comprehensive review. Current Topics in Medicinal Chemistry, 22(25), 2069–2086. https://doi.org/10.2174/1568026622666220831092855

Anggraini, T., Wilma, S., Syukri, D., & Azima, F. (2019). Total phenolic, anthocyanin, catechins, DPPH radical scavenging activity, and toxicity of Lepisanthes alata (Blume) Leenh. International Journal of Food Science, 2019. https://doi.org/10.1155/2019/9703176

Arizmendi-Cotero, D., Villanueva-Carvajal, A., Gómez-Espinoza, R. M., Dublán-García, O., & Dominguez-Lopez, A. (2017). Radical scavenging activity of an inulin-gallic acid graft and its prebiotic effect on Lactobacillus acidophilus in vitro growth. Journal of Functional Foods, 29, 135–142. https://doi.org/10.1016/J.JFF.2016.12.014

Blahova, J., Martiniakova, M., Babikova, M., Kovacova, V., Mondockova, V., & Omelka, R. (2021). Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals (Basel, Switzerland), 14(8). https://doi.org/10.3390/PH14080806

Cirillo, G., Puoci, F., Iemma, F., Curcio, M., Parisi, O. I., Spizzirri, U. G., Altimari, I., & Picci, N. (2012). Starch-quercetin conjugate by radical grafting: synthesis and biological characterization. Pharmaceutical Development and Technology, 17(4), 466–476. https://doi.org/10.3109/10837450.2010.546413

Ćorković, I., Gašo-Sokač, D., Pichler, A., Šimunović, J., & Kopjar, M. (2022). Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase. Life (Basel, Switzerland), 12(11). https://doi.org/10.3390/LIFE12111692

Dewi, R. T., Iskandar, Y. M., Hanafi, M., Kardono, L. B. S., Angelina, M., Dewijanti, I. D., & Banjarnahor, S. D. S. (2007). Inhibitory effect of koji Aspergillus terreus on alpha-glucosidase activity and postprandial hyperglycemia. Pakistan Journal of Biological Sciences : PJBS, 10(18), 3131–3135. https://doi.org/10.3923/PJBS.2007.3131.3135

Diao, Y., Yu, X., Zhang, C., & Jing, Y. (2020). Quercetin-grafted chitosan prepared by free radical grafting: characterization and evaluation of antioxidant and antibacterial properties. Journal of Food Science and Technology, 57(6), 2259–2268. https://doi.org/10.1007/S13197-020-04263-2

Farooq, S., & Sehgal, A. (2018). Antioxidant activity of different forms of green tea: Loose leaf, bagged and matcha. Current Research in Nutrition and Food Science, 6(1), 35–40. https://doi.org/10.12944/CRNFSJ.6.1.04

Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24(7), 1043–1048. https://doi.org/10.1016/J.JFCA.2011.01.008

He, J., Xu, L., Yang, L., & Wang, X. (2018). Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 24, 8198. https://doi.org/10.12659/MSM.911175

Hossain, U., Das, A. K., Ghosh, S., & Sil, P. C. (2020). An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 145. https://doi.org/10.1016/J.FCT.2020.111738

Hu, Q., Wang, T., Zhou, M., Xue, J., & Luo, Y. (2016). In vitro antioxidant-activity evaluation of gallic-acid-grafted chitosan conjugate synthesized by free-radical-induced grafting method. Journal of Agricultural and Food Chemistry, 64(29), 5893–5900. https://doi.org/10.1021/acs.jafc.6b02255

Kumar, M., Tomar, M., Amarowicz, R., Saurabh, V., Sneha Nair, M., Maheshwari, C., Sasi, M., Prajapati, U., hasan, M., Singh, S., Changan, S., Prajapat, R. K., Berwal, M. K., & Satankar, V. (2021). Guava (psidium guajava l.) Leaves: nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods, 10(4). https://doi.org/10.3390/FOODS10040752

Liu, F., Ma, C., Gao, Y., & McClements, D. J. (2017). Food-grade covalent complexes and their application as nutraceutical delivery systems: A Review. Comprehensive Reviews in Food Science and Food Safety, 16(1), 76–95. https://doi.org/10.1111/1541-4337.12229

Liu, J., Lu, J. feng, Kan, J., & Jin, C. hai. (2013). Synthesis of chitosan-gallic acid conjugate: structure characterization and in vitro anti-diabetic potential. International Journal of Biological Macromolecules, 62, 321–329. https://doi.org/10.1016/J.IJBIOMAC.2013.09.032

Liu, J., Lu, J. feng, Kan, J., Wen, X. yuan, & Jin, C. hai. (2014). Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. International Journal of Biological Macromolecules, 64, 76–83. https://doi.org/10.1016/j.ijbiomac.2013.11.028

Liu, J., Wang, X., Yong, H., Kan, J., Zhang, N., & Jin, C. (2018). Preparation, characterization, digestibility and antioxidant activity of quercetin grafted Cynanchum auriculatum starch. International Journal of Biological Macromolecules, 114, 130–136. https://doi.org/10.1016/J.IJBIOMAC.2018.03.101

Lovegrove, A., Edwards, C. H., De Noni, I., Patel, H., El, S. N., Grassby, T., Zielke, C., Ulmius, M., Nilsson, L., Butterworth, P. J., Ellis, P. R., & Shewry, P. R. (2017). Role of polysaccharides in food, digestion, and health. Critical Reviews in Food Science and Nutrition, 57(2), 237–253. https://doi.org/10.1080/10408398.2014.939263

Méndez, C. G. A., Agama-Acevedo, E., Tovar, J., & Bello-Pérez, L. A. (2017). Functional study of raw and cooked blue maize flour: Starch digestibility, total phenolic content and antioxidant activity. Journal of Cereal Science, 76, 179–185. https://doi.org/10.1016/j.jcs.2017.06.009

Musial, C., Kuban-Jankowska, A., & Gorska-Ponikowska, M. (2020). Beneficial properties of green tea catechins. International Journal of Molecular Sciences, 21(5). https://doi.org/10.3390/IJMS21051744

Panek, M. M., Gliszczyńska-Świgło, A., Szymusiak, H., & Tyrakowska, B. (2012). The influence of stereochemistry on the antioxidant properties of catechin epimers. European Food Research and Technology, 235(6), 1001–1009. https://doi.org/10.1007/s00217-012-1826-4

Qian, H., & Nihorimbere, V. (2004). Antioxidant power of phytochemicals from Psidium guajava leaf. Journal of Zhejiang University. Science, 5(6), 676–67683. https://doi.org/10.1007/BF02840979

Rasouli, H., Hosseini-Ghazvini, S. M. B., Adibi, H., & Khodarahmi, R. (2017). Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food & Function, 8(5), 1942–1954. https://doi.org/10.1039/C7FO00220C

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Reshma, M., Pawar, V., & Karthikeyan, E. (2020). Role Of Catechins In Diabetes Mellitus. Eur. J. Mol. Clin. Med., 7(11), 7604–7609.

Samarghandian, S., Azimi-Nezhad, M., & Farkhondeh, T. (2017). Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose-Response, 15(1). https://doi.org/10.1177/1559325817691158

Sasongko, M. B., Wardhana, F. S., Febryanto, G. A., Agni, A. N., Supanji, S., Indrayanti, S. R., Widayanti, T. W., Widyaputri, F., Widhasari, I. A., Lestari, Y. D., Adriono, G. A., Sovani, I., & Kartasasmita, A. S. (2020). The estimated healthcare cost of diabetic retinopathy in Indonesia and its projection for 2025. British Journal of Ophthalmology, 104(4), 487–492. https://doi.org/10.1136/bjophthalmol-2019-313997

Sembiring, E., Sangi, M. S., & Suryanto, E. (2016). Aktivitas antioksidan estrak dan fraksi dari biji jagung (Zea mays L.). Chemistry Progress, 9(1), 14–20. https://doi.org/10.35799/cp.9.1.2016.13908

Shahwan, M., Alhumaydhi, F., Ashraf, G. M., Hasan, P. M. Z., & Shamsi, A. (2022). Role of polyphenols in combating Type 2 Diabetes and insulin resistance. International Journal of Biological Macromolecules, 206, 567–579. https://doi.org/10.1016/J.IJBIOMAC.2022.03.004

Sochorova, L., Prusova, B., Jurikova, T., Mlcek, J., Adamkova, A., Baron, M., & Sochor, J. (2020). The Study of Antioxidant Components in Grape Seeds. Molecules, 25(16). https://doi.org/10.3390/MOLECULES25163736

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/J.BIOCEL.2006.07.001

Wu, T.-Y. ;, Sun, N.-N. ;, Chan, Z. ;, Chen, C.-J. ;, Wu, Y.-C. ;, Chau, C.-F., Wu, T.-Y., Sun, N.-N., Chan, Z., Chen, C.-J., Wu, Y.-C., & Chau, C.-F. (2022). Enhancement of Digestion Resistance and Glycemic Control of Corn Starch through Conjugation with Gallic Acid and Quercetin Using the Free Radical Grafting Method. Processes 2022, Vol. 10, Page 2610, 10(12), 2610. https://doi.org/10.3390/PR10122610

Wu, T. Y., Sun, N. N., Chan, Z., Chen, C. J., Wu, Y. C., & Chau, C. F. (2022). Enhancement of digestion resistance and glycemic control of corn starch through conjugation with gallic acid and quercetin using the free radical grafting method. Processes 2022, Vol. 10, Page 2610, 10(12), 2610. https://doi.org/10.3390/PR10122610

Yilmazer-Musa, M., Griffith, A. M., Michels, A. J., Schneider, E., & Frei, B. (2012). Inhibition of α-amylase and α-glucosidase activity by tea and grape seed extracts and their constituent catechins. Journal of Agricultural and Food Chemistry, 60(36), 8924. https://doi.org/10.1021/JF301147N

Zafar, M. I., Mills, K. E., Zheng, J., Regmi, A., Hu, S. Q., Gou, L., & Chen, L. L. (2019). Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. The American Journal of Clinical Nutrition, 110(4), 891–902. https://doi.org/10.1093/AJCN/NQZ149

Zhu, W., & Zhang, Z. (2014). Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential. International Journal of Biological Macromolecules, 70, 150–155. https://doi.org/10.1016/J.IJBIOMAC.2014.06.047

Downloads

Published

2023-07-19

How to Cite

Nurdin, S. U., Salita, S. R., Oktaviani, C., Subeki, S., & Herdiana, N. (2023). Aktivitas antidiabetes dan antioksidan pati jagung yang dikonjugasi dengan katekin [Antidiabetic and antioxidant activities of catechin conjugated corn starch]. Jurnal Teknologi &Amp; Industri Hasil Pertanian, 28(2), 129–139. https://doi.org/10.23960/jtihp.v28i2.129-139